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On Stochastic Dominance Option Bounds in Discrete and
Continuous Space and Time with Stochastic and

Deterministic Volatility and Pricing with Constant Relative
Risk Aversion

Abstract

By

ELI ROSE

This thesis makes original contributions to the field of asset pricing, which is
a field dedicated to describing the prices of financial instruments and their
characteristics. The prices of these financial instruments are determined
by the behavior of investors who buy and sell them, and so asset pricing
is ultimately done by modeling the behavior of investors. One method
for achieving this is through the framework of stochastic dominance. This
thesis specifically deals with a specific class of financial instruments called
European options and reviews the literature on stochastic dominance op-
tion pricing and discusses new methods for finding stochastic dominance
bounds on options in both discrete and continuous time under both deter-
ministic and stochastic volatility. The results presented here extends the
works of Ritchken and Kuo[29] and Perrakis and Ryan[32]. Furthermore,
stochastic dominance bounds for Heston’s[14] stochastic volatility model
are obtained under certain assumptions. Finally, this thesis extends the
work of Carr and Madan[5] and solves for the characteristic function of the
call price given the physical characteristic function under the CRRA utility
model.
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Chapter 1

Tempered Stable Distribution

Throughout this thesis, various classes of stochastic processes will be used
for examples. The purpose of this chapter is introduce these stochastic
processes and make the reader familiar with them.

1.1 Levy Measures

A Levy Process is any stochastic process {X(t) : t > 0} with the following
properties:
1. X(0) = 0 with probability 1.
2. Independent increments: For t < t′ < t′′, X(t′′)−X(t′) and X(t′)−X(t)
are independent.

3. Stationarity: For s, t ∈ R+, X(t)−X(s)
d
= X(t− s).

Lawler[19] demonstrates that a Levy process has a characteristic function of
the form E[eiuX(t)] = etψ(u), where the function ψ is called the characteristic
exponent and takes the form

ψ(u) = iγu− 1

2
σ2u2 +

∫
R\{0}

[eiux − 1− iuxχ|x|<1(x)]M(dx),

where γ ∈ R, σ > 0, and M is a measure that satisfies

∫
R\{0}

(1 ∧ ||x||2)M(dx) <∞.

1



Every Levy processes can be characterized by the Levy triplet (γ, σ,M).
The measure M is called a Levy measure. All Levy processes are also in-
finitely divisible. That is, for any t > 0, for any n, there exists a sequence
of independent identically distributed (iid) random variables {Xi,n}ni=1 such
that X(t) =

∑n
i=1Xi,n.

1.2 Tilting and Tempering

Let the function f be a partial density function (PDF) with support on
R+

0 . fθ is the tilted density of f if fθ(x) = 1
L(θ)

e−θxf(x), where L is the
Laplace transform of f . Taking the Laplace transform of the tilted density:
Lθ(λ) :=

∫∞
−∞ e

−λxe−θx f(x)
L(θ)

dx = 1
L(θ)

∫∞
−∞ e

−(λ+θ)xf(x)dx = L(θ+λ)
L(θ)

. If f
describes an infinitely divisible distribution with non-negative support, its
Laplace transform take the form

L(λ) = exp[

∫ ∞
0

(e−λx − 1)M(dx)− λb]

for some Levy measure M and b ≥ 0. Therefore,

Lθ(λ) = exp[

∫ ∞
0

(e(−λ−θ)x − 1)M(dx)− (θ + λ)b]∗exp[

∫ ∞
0

(1− e−θx)M(dx) + θb]

= exp[

∫ ∞
0

(e−λx − 1)e−θxM(dx)− λb] = exp[

∫ ∞
0

(e−λx − 1)Mθ(dx)− λb],

where Mθ(dx) = e−θxM(dx). Mθ is called the tilted Levy measure. Taking
the product of convolution powers f ∗riθi

, where θi, ri > 0, one arrives at a
Laplace transform of the form

exp[

∫ ∞
0

(e−λx − 1)q(x)M(dx)− λb],

where q is a completely monotone function with lim
x→∞

q(x) = 0. This is

called tempering.

2



1.3 Tempered Stable Levy Measure

By Rosinski[30], an α-Stable distribution is a distribution equipped with
the α-Stable Levy measure M0, where

M0(dx) = |x|−α−1dx,

where α ∈ (0, 2). Then the Tempered α-stable distribution has Levy
measure

M(dx) = q(x)M0(dx) = |x|−α−1q(x)dx

for some q : R → R+ such that q is noin-increasing on (0,∞) and non-
decreasing on (−∞, 0) and lim

|x|→∞
q(x) = 0. The Levy measure M corre-

sponds to a proper Tempered α-Stable distribution if lim
x→0

q(x) = 1. In

Rosinski, it is shown that the Levy measure M of a Tempered Stable pro-
cess is proper if and only if lim

s→0+
sαM(|x| > s) <∞. Let Q be some measure

on B(R) such that

q(x) =

∫ ∞
0

e−|x|sQ(ds)

Let R be some measure such that

R(A) =

∫ ∞
−∞

χA(x−1)|x|αQ(dx),∀A ∈ B(R).

Then for any function F : R→ R,

∫ ∞
−∞

F (x)R(dx) =

∫ ∞
−∞

F (x−1)|x|αQ(dx) (1.1)

Therefore,

M(dx) =q(x)|x|−α−1dx

=

∫ ∞
0

e−|x|sQ(ds)|x|−α−1dx

=

∫ ∞
0

e−
|x|
s sαR(ds)|x|−α−1dx,

3



where the third equality can be observed by taking F (s) = e−
|x|
s sαχR+(s)

and plugging it into equation (1.1). R is called the Rosinski measure. It
is shown in Rosinski that M is a Levy measure if and only if the Rosinski
measure R satisfies

∫∞
−∞ |x|

2 ∧ |x|αR(dx) < ∞ and R({0}) = 0. It is also
shown that the Levy measure M corresponds to a proper Tempered Stable
Distribution if and only if

∫∞
−∞ |x|

αR(dx) <∞.

1.4 The CGMY Distribution

The CGMY distribution has the spectral measure R of the form

R(dx) =
(
CGY δ− 1

G
(x) + CMY δ− 1

M
(x)
)
dx,

where Y ∈ [0, 2), C > 0, G > 0,M > 0. If ν is some Levy measure such
that

ν(dx) = C(
e−G|x|

|x|1+Y
χx<0 +

e−M |x|

|x|1+Y
χx≥0)dx

then the Levy triplet for a CGMY process is (m, 0, ν), where m ∈ R is
some drift term. Thus the CGMY distribution can be completely charac-
terized by four parameters (plus a drift parameter). From Rachev[26], the
characteristic exponent ψ then takes the form

ψ(u) = ium+ CΓ(Y )(M − iu)Y −MY + (G+ iu)Y −GY ,

where m is the drift parameter.

1.4.1 Cumulants of the CGMY Distribution

The nth moment µn of some random variable X is given by µn = E[Xn].
The nth cumulant cn is given by

cn

n∑
k=1

(−1)n(k − 1)!Bn,k(µ1, ..., µn),

where Bn,k is the nth k-incomplete Bell polynomial. From [26], the cumu-
lants of the CGMY distribution can obtained directly from the character-
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istic function. The jth cumulant cj is given by

cj = Γ(j − Y )
C

M j−Y + (−1)jΓ(j − Y )
C

Gj−Y

for j ∈ {1, 2, ...}. Note that this means the cumulants increases linearly
with C.

1.5 The Variance Gamma Distribution

The Variance Gamma Distribution is a class of distributions with charac-
teristic exponent ψ given by

ψ(u) = (1− iθκu+
1

2
σ2κu2)−

1
κ ,

where θ ∈ R, σ > 0, κ > 0. If ν is some Levy measure such that

ν(dx) =
e
θx
σ2

κ|x|
exp

−
√

2
κ

+ θ2

σ2

σ
|x|

 dx

then the Levy triplet for the Variance Gamma distribution is given by
(
∫
|x|<1

xν(dx), 0, ν). Observe that when θ = 0, the variance gamma distri-

bution is a CGMY distribution with C = 1
κ
, G = M =

√
2
κ

σ
, Y = 0.

1.6 Analytic and Entire Characteristic Func-

tions

In the complex plain, a function f is analytic on some set A ⊂ C if and
only if there exists an open set U containing A such that lim

z→z0

f(z)−f(z0)
z−z0

exists for all z0 ∈ U. The function f is entire if and only if f is analytic
on all of C. The order α of an entire function f is given by

α = lim sup
r→∞

ln(ln ||f ||∞,Br)
ln r

,

5



where || · ||∞,Br denotes the infinity norm over the ball of radius r. The
type τ of an entire function is given by

τ = lim sup
r→∞

ln ||f ||∞,Br
r

.

Future chapters will be dealing with theorems that assume an analytic
characteristic function. This section will discuss the necessary and sufficient
conditions for a random variable to have an analytic characteristic function.
The following theorems provide useful properties of analytic characteristic
functions[22]:

Theorem 1. If F is a CDF then its characteristic function ψ is analytic
on the strip |=[z]| < R for some R > 0 if

1− F (x) + F (−x) = O(e−rx)

for any 0 < r < R.

Intuitively, this is saying that the distribution must have sufficiently thin
tails in order for its characteristic function to be analytic. One necessary
condition is that all moments must be finite.

Theorem 2. If F is a CDF then its characteristic function ψ is an entire
function of order 1 + α−1 and type τ if and only if

lim inf
x→∞

1

x1+α ln(1− F (x) + F (−x))
=

(ατ−1)α

(1 + α)1+α

and 1− F (x) + F (−x) > 0 for all x > 0.

1.7 Stochastic Differential Equations and Stochas-

tic Integrals

A diffusive stochastic differential equation (SDE) takes the form:


dS(t) = a(S(t), t)dt+ b(S(t), t)dW (t)

S(0) = s0

. (1.2)

6



A Weiner process (also sometimes called a Brownian motion) W is a Levy
process such that W (t) −W (r) ∼ N (0, t − r)∀t > r ≥ 0. The Stochastic
Differential Equations (SDE) can be used to characterize a stochastic pro-
cess in terms of a stochastic integral, which is the limit of Riemann sums
using left endpoints. Under this definition of stochastic integration, (1.2)
describes a process such that

S(t) =s0 +

∫ t

0

dS(t)

=s0 +

∫ t

0

a(S(t), t)dt+

∫ t

0

b(S(t), t)dW (t)

=s0 + lim
n→∞

mn∑
k=1

a(S(t
(n)
k−1), t

(n)
k−1)(t

(n)
k − t

(n)
k−1) + lim

n→∞

mn∑
k=1

b(S(t
(n)
k−1), t

(n)
k−1)(W (t

(n)
k )−W (t

(n)
k−1)),

where 0 = t
(n)
0 < ... < t

(n)
mn = t for every n, max1≤k≤mn |t

(n)
k − t

(n)
k−1| → 0

as n → ∞, and W is a Wiener process. The above is the Ito definition
of a stochastic integral. Ito calculus makes the following assumptions that
are consistent with this representation of a stochastic integral. These as-
sumptions are: dW (t)dW (t) = dt, dW (t)dt = 0, and dt2 = 0. Using the
Taylor expansion and the aforementioned assumptions, one arrives at Ito’s
Lemma:

Lemma 1. Let f : R2 → R be a smooth function and let the stochastic
process S be characterized by (1.2). Then

df(S(t), t) =
∂f

∂t
dt+

∂f

∂S
a(S(t), t)dt+

∂2f

∂S2

1

2
b(S(t), t)2dt+

∂f

∂S
b(S(t), t)dW (t).

Now, the diffusive SDE describes a process with almost surely contin-
uous sample paths. If one wishes to characterize a process that has jump
discontinuities, one can add a jump term characterized by a compound
Poisson process. Then Jump-Diffusion SDE takes the form:


dS(t) = a(S(t), t)dt+ b(S(t), t)dW (t) + JtdNt

S(0) = s0

. (1.3)

7



Then (1.3) characterizes the process described by

S(t) =s0 +

∫ t

0

dS(t)

=s0 +

∫ t

0

a(S(t), t)dt+

∫ t

0

b(S(t), t)dW (t) +

∫ t

0

JtdN(t)

=s0 + lim
n→∞

mn∑
k=1

a(S(t
(n)
k ), t

(n)
k )(t

(n)
k − t

(n)
k−1) + lim

n→∞

mn∑
k=1

b(S(t
(n)
k ), t

(n)
k )(W (t

(n)
k )−W (t

(n)
k−1))

+ lim
n→∞

mn∑
k=1

J
t
(n)
k

(N(t
(n)
k )−N(t

(n)
k−1)),

where Jt, N, and W are independent, Jt
d
= J for all t, where J is some

random variable, and N(t + s) − N(t) ∼ Poiss(λs) for some parameter λ.
Ito’s Lemma can also be extended to Jump-Diffusion processes as follows:

Lemma 2. Let f : R2 → R be a smooth function and let the stochastic

process S be characterized by (1.2). Then

df(S(t), t) =
∂f

∂t
dt+

∂f

∂S
a(S(t), t)dt+

∂2f

∂S2

1

2
b(S(t), t)2dt+

∂f

∂S
b(S(t), t)dW (t)+[f(S(t−) + Jt, t)− f(S(t−), t)] dNt.

8



Chapter 2

Introduction to Asset Pricing

Throughout this thesis, various arguments built on asset pricing theory will
be used to derive formulas, theorems, and lemmas. This chapter introduces
the foundation for asset pricing theory so that the reader may become
familiar with the concepts and models used throughout this thesis. An
asset or security can be described as an uncertain payment on some future
date, which can be described by random variable or a stochastic process
depending on the context. A market is a vector of assets. If M is a market
and (Ω,F ,P) is some probability space such that M is F measurable then it
is said that M is defined on (Ω,F ,P). A portfolio is a linear combination
of assets. A return on some asset or portfolio over some fixed time interval
is the change in the asset price. A portfolio is said to be long an asset if its
return is increasing in the asset’s return. A portfolio is said to be short an
asset if its return is decreasing in the asset’s return. A portfolio is said to
be self-financing if it has a price of 0. A replicating portfolio of some
security is a portfolio whose return is equal to the return on the security
almost surely. A riskless asset is an asset whose return is deterministic.
A probability measure Q is a martingale measure if all assets in the
market are martingales under Q. It is a time-discounted martingale
measure if there exists some deterministic function of time R : R+ → R
such that any asset in the market multiplied by R is a martingale. The
probability measures P and Q are equivalent on the σ-field F if, for any
A ∈ F , P[A] > 0 if and only if Q[A] > 0. Given a portfolio, buying x
units of an asset adds x units of that asset to that portfolio. Selling x
units of that asset subtracts x units from that portfolio. Short selling
an asset is the act of selling the asset resulting in the portfolio being short
the asset. The fundamental problem that asset pricing seeks to answer is
as follows[7]: What is the value of a claim to an uncertain payment? The
concept of arbitrage can be used to answer this question.

9



Definition 1. Arbitrage is when a self-financing portfolio has, at some
fixed date, an almost sure non-negative return, and positive probability of
a positive return.

If all investors are rational and prefer to have more money than less,
then an investor will always take advantage of an opportunity for arbitrage.
However, if investors keep buying an arbitrage portfolio, this will drive up
the price of such a portfolio. Rational investors will drive up the price of the
portfolio until the assets in the arbitrage portfolio become too expensive
and the arbitrage opportunity disappears. Therefore, in equilibrium, assets
should be priced in a way that allows for no arbitrage opportunities. This
motivates the First Fundamental Theorem of Asset Pricing.

Theorem 3 (First Fundamental Theorem of Asset Pricing). Let a market
be defined on the probability space (Ω,F ,P). No arbitrage opportunities in
the market exist if and only if there exists a martingale measure Q equiv-
alent to P such that every asset is priced according to its time-discounted
expectation under Q.

Observe that since Q is equivalent to P, there exists random variable D
such that dQ

dP =: D, where D is F -measurable, strictly positive and finite
almost surely, and has expectation 1 (under P). D is often referred to as
the stochastic discount factor. The consumption-based model is
a framework for asset pricing in which there exists a measurable random
variable U ′(c) called marginal utility of consumption that describes
the utility one derives from consuming a little more of the asset’s payoff in
the future. Under this framework, the stochastic discount factor is chosen
to be the normalized marginal utility of consumption (D = U ′(c)

E[U(c)]
), which

will be explained in greater detail in section (2.2). Of course, the marginal
utility of consumption is high during bad times and low during good times
(food tastes better when you’re hungry).

2.1 Option Markets and Completeness

This section will state The Second Fundamental Theorem of Asset Pricing,
which utilizes the concept of completeness:

Definition 2. Let (Ω,F ,P) be the probability space on which a market is
defined. The market is complete if any measurable random variable can
be constructed from a portfolio of assets.

The following a theorem provides an foundation for the basis of the
Black-Scholes model, which will be expounded on in section 2.3:
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Theorem 4 (Second Fundamental Theorem of Asset Pricing). A market
defined on the the probability space (Ω,F ,P) has no-arbitrage opportunities
and is complete if and only if there exists a unique martingale measure
Q such that every asset price is equal to the deterministically discounted
expected price of that asset under Q.

In finance, an option gives the holder the option to buy or sell a par-
ticular asset, called the underlying asset, at a particular date or multiple
particular dates. A European call option is an option that allows the holder
to purchase an underlying asset on a given date, called the expiry date,
for a predetermined price, called the strike price. If the price of the under-
lying asset falls below the strike price then the option is not exercised, since
exercising the option would result in the owner of the option losing money.
The price of an option can generally be described as a function of time and
the underlying asset. In a complete market, a replicating portfolio always
exists for an option. Therefore, in order to avoid an arbitrage opportunity,
the price of the call must be equal to the price of the replicating portfolio.
If the price of the call exceeds the price of the replicating portfolio, then
one can purchase the replicating portfolio and short sell the call. The cost
of the strategy will be negative. Then one can purchase a riskless bond to
make up the difference and make the strategy self-financing. Such a strat-
egy would pay out the return on the bond and would therefore statewise
dominate 0. The opposite strategy statewise dominates 0 if the price of the
replicating portfolio exceeds the price of the call.

2.2 Utility Functions and the Consumption-

Based model

Rubinstein[31] introduces a model for the pricing of options, called the
consumption-based model, which makes the following assumptions:

1. There is a single price for every asset.

2. All else equal, the greater the dividends of an asset, the greater the
price of that asset.

3. There are no economies of scale and every participant in the market
is a price-taker (i.e., they cannot noticeably influence the price). All
investors can purchase the same security at the same date for the
same price.

4. Every investor seeks to maximize a utility function over lifetime dollar
consumption, which is concave and additive in each date.

11



5. There exists a representative investor such that

• Every homogenous economic characteristic also describes the
representative investor.

• If a certain characteristic is measured in units of wealth, then
this characteristic for the representative investor is the unweighted
average over all investor characteristics.

• Prices are determined as if all investors are average.

The assumption that the utility function is concave is essentially the same
as the assumption that the representative investor is risk-averse, since con-
cavity implies marginal utility diminishes as consumption increases. Now,
if U is the utility function of the representative investor, Ct is the consump-
tion of the representative investor at time t, St is the price of an asset at
time t, and Et is the consumption of the representative investor if they had
not purchased the asset, then the above conditions imply that the repre-
sentative investor wants to balance their portfolio in a way that maximizes
total expected utility:

max
ξ
U(C0) + βE[U(Ct)]

s.t. Ct = Et + ξSt

C0 = E0 − ξS0,

where β is some subjective time-discounting factor and t is the time un-
til the next portfolio revision opportunity. First-order conditions yield
d
dξ

(U(C0) + βE[U(Ct)]) = βE[StU
′(Ct)] − S0U

′(C0) = 0. Solving for S0

yields S0 = β
U ′(C0)

E[U ′(Ct)St]. Since the stochastic discount factor D must

satisfy E[D] = 1, this allows for D = U ′(Ct)
E[U ′(Ct)]

and β = U ′(C0)
rE[U ′(Ct)]

, where r is

some constant so that S0 = r−1E[DSt]. Since U is concave, U ′ is decreasing
in consumption, and thus so is D. This will be the framework used for
asset pricing in all of the following sections.

2.3 The Black-Scholes Model

This section will use the information from the previous sections to derive
and solve the famous Black-Scholes equation. First, assume there exists
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some riskless asset b(t) described by the SDE

db(t) = rb(t)dt,

where r is some constant called the instantaneous rate of return. A U.S.
treasury bond could be an example of such an asset. Black and Scholes[3]
assumed that the change in the price of a stock s(t) at time t could be
described by the following diffusive SDE:

ds(t) = µs(t)dt+ σs(t)dw(t),

where w(t) is a Weiner Process at time t. Under the Black-Scholes frame-
work, the market is composed of only s and b and some option whose price
f(s(t), t) can be represented as a function of s(t) and t. By Ito’s Lemma, the
change in price of a call option f(s(t), t) on s(t) at time t can be described
by the following SDE:

df(s(t), t) =

(
∂f

∂t
+
∂f

∂s
µs(t) +

∂2f

∂s2

1

2
σ2s(t)2

)
dt+

∂f

∂s
σsdw(t).

Now, construct a portfolio by buying a call and short selling ∂f
∂s

units of
the underlying stock. The change in the price of such a portfolio p(s(t), t)
at time t can be described by the following SDE:

dp(s(t), t) = df(s(t), t)− ∂f

∂s
ds =

(
∂f

∂t
+
∂2f

∂s2

1

2
σ2s(t)2

)
dt.

Observe that this SDE has no random part. This means that, in order
to avoid arbitrage, its return must equal the return of p(s(t),t)

b(t)
units of the

riskless asset. Otherwise, if its return exceeded that of the riskless asset, it
would be possible to construct a self-financing portfolio with almost sure
positive return by buying the replicating portfolio and selling p(s(t),t)

b(t)
units

of the riskless asset, resulting in arbitrage. So it must be the case that
dp(s(t), t) = p(s(t),t)

b(t)
db(t) = rp(s(t), t)dt. Since p(s(t), t) = f(s(t), t) − ∂f

∂s
s,

this yields

(
∂f

∂t
+
∂2f

∂s2

1

2
σ2s(t)2

)
dt =

(
rf(s(t), t)− r∂f

∂s
s

)
dt,

13



which implies

∂f

∂t
+
∂2f

∂s2

1

2
σ2s(t)2 − rf(s(t), t) + r

∂f

∂s
s = 0.

This is the famous Black-Scholes PDE. Boundary values can be obtained
from the fact that a call option with strike price K pays out f(s(T ), T ) =
(s−K)+ at the expiration time T .
This PDE can be solved by taking using the Feynman-Kac Theorem. The
closed form solution is

f(s(t), t) = Φ(d1)s(t) + Φ(d2)Ke−r(T−t),

where d1 = 1
σ
√
T−t

[
ln( s(t)

K
) + (r + σ2

2
)(T − t)

]
, d2 = d1 − σ

√
T − t, and Φ

is standard normal CDF.

2.4 The Merton Model

Merton[23] argues that stock price returns generally do not have continuous
sample paths and that “there is a prima facie case for the existence of
jumps.” Mertons assumes the following model for stock price movement:

dst = (µ− kλ)stdt+ σstdw + (Y − 1)stdN,

where dN is a poisson process differential independent of dw with jump

intensity λ and Y is a log-normally distributed random variable with mean

k + 1. If f(s(t), t) represents the price of a call at time t with underlying

price s(t) then, by Ito’s lemma for Jump-Diffusion processes, it must satisfy

the following SDE:

df(s(t), t) =

(
∂f

∂t
+
∂f

∂s
(µ− λk)s(t) +

∂2f

∂s2

1

2
σ2s(t)2

)
dt+

∂f

∂s
σsdw(t)+[f((Y − 1)s−, t)− f(s−, t)] dN.
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If a portfolio p is constructed by buying one call and selling ∂f
∂s

shares as

in the previous section, the following SDE must hold:

dp = df−∂f
∂s
ds =

(
∂f

∂t
+
∂2f

∂s2

1

2
σ2s(t)2

)
dt+

(
f((Y − 1)s(t−), t)− f(s(t−), t)− ∂f

∂s
(Y − 1)s(t)

)
dN.

The above SDE describes a pure jump process. Intuitively, such a portfolio

would have a predictable return most of the time, but occasionally expe-

rience unpredictable jumps. Since, this portfolio is not riskless, arbitrage

arguments cannot be made about its required return. To overcome this

hurdle, Mertons assumed that the jumps were “non-systematic”. That is,

it is assumed the jumps the same expectation under the physical measure

P as under the risk-neutral measure Q. Taking the expectation, one arrives

at

E[dp] =

(
∂f

∂t
+
∂2f

∂s2

1

2
σ2s(t)2 − (E[f((Y − 1)s(t−), t)− f(s(t−), t)]− ∂f

∂s
ks(t))λ

)
dt = rpdt = rfdt−∂f

∂s
sdt.

Rearranging yields

∂f

∂t
+
∂2f

∂s2

1

2
σ2s2 − λE[f((Y − 1)s, t)− f(s, t)]− ∂f

∂s
(r − kλ)s− rf = 0.

If f is a call then the following boundary condition must hold f(s(T ), T ) =
(s(T )−K)+ for some fixed K. The solution to the PDE can be written in
the form

f(s(t), t) =
∞∑
n=0

e−λ(T−t)λn(T − t)n

n
E[fBS(s(t)Xne

−λk(T−t)), t],

where fBS is the Black-Scholes equation and the random variablesX1, X2, ...

are independent, with Y
d
= X1

d
= X2

d
= .... In the case where Y is log-

normally distributed, the price can be given in closed-form by

f(s(t), t) =
∞∑
n=0

e−λ(T−t)λn(T − t)n

n
E[fn(s(t), t)],
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where
fn = fBS(s(t), t;σ2 +

n

T
δ2),

where the third argument is the variance parameter and δ is the variance
of Y.

2.5 The Heston Model

In the special case of the Heston model, the stock price is described by the
following system of SDEs:

dv(t) = κ(θ − v(t))dt+ σ
√
v(t)dz2(t) (2.1)

ds(t) = µsdt+
√
v(t)sdz1(t) (2.2)

where z1 and z2 are Wiener processes with constant correlation ρ. So, by Ito

Calculus, dz1dz2 = ρdt, dt2 = 0, dzidt = 0, i = 1, 2, and dz2
i = dt, i = 1, 2.

Heston[14] uses this fact to derive the following Taylor Expansion for any

portfolio P that is long one unit of a financial derivative C dependent on

the stock price, volatility, and time, and short ∂C
∂s

units of the stock:

dP = dC(s(t), v(t), t)−∂C
∂s

ds =

(
∂C

∂t
+
∂C

∂v
κ(θ − v) +

1

2

∂2C

∂s2
+
∂2C

∂s∂v
ρσvs+

1

2

∂2C

∂v2
σv

)
dt+

∂C

∂v
σ
√
vdz2.

(2.3)

Now, observe that if r is the riskless rate then erdt = 1 + rdt. Also observe

that U ′(c+dc) = U ′(c)−γU ′(c)dc
c

+O(dc2) = U ′(c)(1−γ dc
c

)+O(dc2), where

γ = − cU ′′(c)
U ′(c)

is the relative risk aversion. If U ′(c) is the marginal utility of

consumption and β is the subjective discount factor of the representative
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investor then the consumption-based model implies:

PU ′(c) =βE[(P + dP )U ′(c+ dc)]

=βE[U ′(c+ dc)]P + βE[U ′(c+ dc)]

(
∂C

∂t
+
∂C

∂v
κ(θ − v) +

1

2

∂2C

∂s2
vs2 +

∂2C

∂s∂v
ρσvs+

1

2

∂2C

∂v2
σ2v

)
dt

+
∂C

∂v
σ
√
vβE[dz2U

′(c+ dc)]

=(1− rdt)U ′(c)P + (1− rdt)U ′(c)
(
∂C

∂t
+
∂C

∂v
κ(θ − v) +

1

2

∂2C

∂s2
vs2 +

∂2C

∂s∂v
ρσvs+

1

2

∂2C

∂v2
σ2v

)
dt

+
∂C

∂v
σ
√
v(−U ′(c)γβE[dz2

dc

c
] + βE[dz2O(dc2)]).

Heston assumes that γ is constant and that consumption c is driven by
the following process:

dc = µccdt+ σc
√
vcdz3,

where µc and σc are constants and dz3 is some Weiner process (that may
be correlated with dz2 and dz1). Thus the higher order terms are constant
(and cancel with the expectation). Using these facts and rearranging the
above equation gives us the following PDE:

∂C

∂t
+
∂C

∂v
(κ(θ−v)−λv)+

1

2

∂2C

∂s2
+
∂2C

∂s∂v
ρσvs+

1

2

∂2C

∂v2
σ2v+r

∂C

∂s
s−rC = 0,

where λ is some constant. The Heston model has some difficulties:

• The assumption that λ is constant relies on consumption being driven
by the above diffusive process and on the relative risk aversion γ being
constant, neither of which are trivial or obvious assumptions.

• The estimation of λ requires us to know the price of another volatility-
dependent asset.

In chapter 5, bounds are estimated that rely on less stringent assumptions
and do not rely on parameters that need to be estimated from another
volatility-dependent asset.
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2.6 Parameter Estimation

2.6.1 Method of Moments

One can obtain moments from physical stock price behavior. Furthermore,
one
can discretize over time by letting Qt := St+1

St
and modeling the dynamics

of {Qt}nt=1 by

Qt+1 = 1 + µ+
√
Vt(ρZ1 +

√
1− ρ2Z2)

Vt+1 = Vt + κ(θ − Vt) + σ
√
VtZ1

where Z1, Z2 are independent standard normal variables.One can estimate

the jth empirical moment µj by 1
n

∑n
t=1 Q

j
t := µj. Dunn et al.[11] gives the

following expression for the first, second, fourth and fifth moments in terms

of the model parameters:

µ1 =1 + µ

µ2 =(1 + µ)2 + θ

µ4 =
1

κ(κ− 2)
(κ2µ4 + 4κ2µ3 + 6µ2κ2θ − 2κµ4 + 6κ2µ2 + 12κ2µθ + 3κ3θ3 − 8κµ3

− 12κµ2θ + 4κ2µ+ 6κ2θ − 12κµ2 − 24κµθ − 6κµθ2 − 3σ3θ + κ2 − 8κµ− 12κθ − 2κ)

µ5 =
1

κ(κ− 2)
(κ2µ5 + 5κ2µ4 + 10µ2κ3θ − 2κµ5 + 10κ2µ3 + 30κ2µ2θ + 15κ2µθ2 − 10κµ4

− 20κµ3θ + 10κ2µ2 + 30κ2θµ+ 15κ2µ2 − 20κµθ + 10κ2µ2 − 30κ2µθ + 15κ2θ2 − 20κµ3 − 60κµ2θ

− 30κµθ2 − 15µσ2θ + 5κ2µ+ 10κ2θ − 20κµ2 − 60κµθ − 30κθ2 − 15σ2θ + κ2 − 10κµ− 20κθ − 2κ)

Note that this is a system of 4 equations and 4 unknowns, as ρ is miss-
ing. This is one shortcoming of the method of moments. Furthermore,
if φH(·;µ, κ, θ, σ, ρ) =: φ is the characteristic function of the log-stock
price at t = 1 then it follows that µn = S−n0 φ(−in) for any natural num-
ber n. Therefore, the method of moments is choosing parameters so that
φ(−i) = S0µ1, φ(−2i) = S2

0µ2, φ(−4i) = S4
0µ4, and φ(−5i) = S5

0µ5.
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2.6.2 Maximum Likelihood Estimate (MLE)

The maximum likelihood estimate for the parameters is the choice of pa-
rameters so that
`(µ, κ, θ, σ, ρ) :=

∑n−1
t=1 log(f(Qt+1, Vt+1;µ, κ, θ, σ, ρ)) is maximized, where

f is the joint density of Q and V . The advantage of this method is it
generates all parameters. However, the disadvantage of this method is
it requires us to estimate {Vt}nt=1. Since Qt+1 ∼ N (1 + µ, Vt) and Vt ∼
N (Vt − κ(θ − Vt), σ

2Vt) and ρ = corr(Qt+1, Vt+1), the joint density f is
given by

f(Qt+1, Vt+1;µ, κ, θ, σ, ρ) =
1

2πσVt
√

1− ρ2
exp[−(Qt+1 − 1− µ)2

(1− ρ2)

+
ρ(Qt+1 − 1− µ)(Vt+1 − Vt − θκ+ κVt)

Vtσρ

− (Vt+1 − Vt − θκ+ κVt)
2

2Vtσ2ρ
]

Therefore, the likelihood function is given by

`(µ, κ, θ, σ, ρ) =
n−1∑
t=1

[log(2)− log(π)− log(σ)− log(Vt)− log(
√

1− ρ2)− (Qt+1 − 1− µ)2

(1− ρ2)

+
ρ(Qt+1 − 1− µ)(Vt+1 − Vt − θκ+ κVt)

Vtσρ

− (Vt+1 − Vt − θκ+ κVt)
2

2Vtσ2ρ
].

2.7 Implementation

Heston[14] found the a closed-form solution to the PDE by assuming the
call price H takes the form

H(s(t), v(t), t;κ, θ, ρ, σ, k, T, r, λ) = sP1 − e−rTkP2

as in the Black-Scholes equation. Heston demonstrated that P1 and P2 are
probability distributions that satisfy

1

2
v
∂2Pj
∂x2

+ρσv
∂2Pj
∂x∂v

+
1

2
σ2v

∂2Pj
∂v2

+ (r+ujv)
∂Pj
∂x

+ (kθ− bj)
∂Pj
∂v

+
∂Pj
∂t

= 0,
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where u1 = 1
2
, u2 = −1

2
, b1 = κ + λ − ρσ, b2 = κ + λ, x = ln s, with

terminal condition Pj(x, v, T ; k) = χ[x≤k]. Now let f1 and f2 satisfy the
same PDE corresponding to P1 and P2, respectively, but with the boundary
condition fj(x, v, T ;u) = eiux. The solutions f1 and f2 are the characteristic
functions of P1 and P2 since the expectation of the terminal price under the
Q measure EQ[eiuX ] is the Fourier transform by definition. Heston found
that

fj(x, v, t;u) = exp[C(T − t;u) +D(T − t;u)v + iux],

where

C(τ ;u) = irτ +
kθ

σ2
[(bj − ρσui+ d)τ − 2 ln(

1− gedτ

1− g
)],

D(τ ;u) =
bj − ρσui+ d

σ2
(

1− edτ

1− gedτ
),

g =
bj − ρσui+ d

bj − ρσui− d
,

d =
√

(ρσui− b2
j)− σ2(2ujui− u2).

Applying the inverse Fourier Transform for CDFs to obtain the Pj’s:

Pj[x, v, t; ln k] =
1

2
+

1

π

∫ ∞
0

<[
eiu ln kf(x, v, t;u)

iu
]du.

Numerically, the Pj’s can be obtain using a Fast Fourier Transform algo-
rithm. The script for generating figure (5.2) can be found in Appendix
section (8.4).
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2.8 The CRRA Model

Constant Relative Risk Aversion describes a state of nature where the
representative investor’s risk preference relative to their consumption is
independent with their level of consumption. The relative risk aversion
R(c) is the negative of the relative change in marginal utility over the
relative change in consumption:

R(c) = −dU
′(c)/U ′(c)

dc/c
= −cU

′′(c)

U ′(c)
.

When R is some constant γ, the following function solves the above differ-
ential equation:

U(c) =
c1−γ − 1

1− γ

for γ 6= 1, γ > 0. Moreover, it follows from l’Hospital’s rule that lim
γ→1

U(c) =

ln c. Therefore, it is common to use

U(c) =


c1−γ−1

1−γ γ > 0, γ 6= 1

ln c γ = 1

.

The above class of functions is called the isoelastic utility functions, and
the parameter γ is referred to simply as the relative risk aversion. Under
such a model of utility, if q is the risk neutral density of an index then
q(x) = Nx−γf(x), where f is the empirical density and N is some nor-
malization constant chosen so that

∫∞
0
q(x)dx = 1. An efficient algorithm

for computing the call price under the CRRA model will be explored in
chapter 6.

2.9 Fast Fourier Transform

The FFT algorithm is an efficient method for computing the following sum:

N∑
j=1

e−i
2π
N

(j−1)(k−1)x(j), k = 1, ..., N.
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Assume N is even and factors into rs and let j = rj1 + j2, where j1 =
0, 1, ..., s − 1 and j2 = 1, 2, ..., r. Similarly, let k = sk1 + k2, where k1 =
0, 1, ..., r − 1 and k2 = 1, ..., s. Then

N∑
j=1

e−i
2π
N

(j−1)(k−1)x(j) =
r∑

j2=1

e−i
2π
N

(j2−1)(k−1)

s−1∑
j2=0

e−i
2π
N

(rj1)(k−1)x(rj1 + j2)

=
r∑

j2=1

e−i
2π
N

(j2−1)(k−1)

s−1∑
j2=0

e−i
2π
N

(rj1)(sk1)e−i
2π
N

(rj1)(k2−1)x(rj1 + j2)

=
r∑

j2=1

e−i
2π
N

(j2−1)(k−1)

s−1∑
j2=0

e−i2πj1sk1e−i
2π
N

(rj1)(k2−1)x(rj1 + j2)

=
r∑

j2=1

e−i
2π
N

(j2−1)(k−1)

s−1∑
j2=0

e−i
2π
N

(rj1)(k2−1)x(rj1 + j2)

=
r∑

j2=1

e−i
2π
N

(j2−1)(k1)

s−1∑
j2=0

e−i
2π
N

(rj1+j2−1)(k2−1)x(rj1 + j2)

Observe that for the inner sum of the last line, there is one multiplication
and addition for each of the s different values of j1 for each of the r different
values of j2 for each of the s different values of k2. Then, for the outer sum
of the last line, there is one multiplication and addition for each of the r
different values of j2 for each of the r different values of k1 for each of the
s different values of k2. Consequently, the total computational time is of
order rs2 + sr2 = N(r + s). Compare this with the original formulation of
the sum, wherein one would have to compute a multiplication and addition
for each of the N different values of j for each of the N different values
of k, resulting in a computational time of order N2. This is a significant
speed boost. For example, consider the case where N = 2p. Then N can
be broken down into p factors of 2, resulting in a computational time of
order N log2N. For this reason, it is desirable to use FFT to compute call
prices. This will be significant for discussing efficient computation of call
prices in section 4.1.1 and chapter 6.

2.10 Carr and Madan

This section reviews a well-known application of fft in option pricing, ex-
tending the ideas discussed in section 2.9. Carr and Madan[5] solve for
the Fourier Transform of a call in terms of the Fourier Transform of the
risk-neutral distribution. Carr and Madan finds that, for α > 0 chosen so
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that the α + 1 statistical moment of the underlying is finite, the Fourier
Transform of a call option f(ek) at strike price ek multiplied by the factor

eαk is given by ψ(u) = e−rT φ(u−(α+1)i)
α2+α−u2+(2α+1)ui

, where r is the instantaneous
riskless rate, T is the time to expiry, and φ is the Fourier Transform of the
risk-neutral distribution. Therefore, the price of a call at strike price ek is
given by

e−αk

2π

∫ ∞
−∞

e−iuxψ(u)du

The difficulty here is the risk-neutral characteristic function is required as
an input, which isn’t always easy to obtain. In practice, it is almost always
easier to first obtain the physical characteristic function and then assume
some functional form for the pricing kernel (usually a power function, as
CRRA is by far the most common model for utility used in the literature).
Chapter 6 will explore an efficient algorithm for pricing options when only
a physical characteristic function and a CRRA pricing kernel are given.
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Chapter 3

Introduction to Stochastic

Dominance Asset Pricing

The previous chapter dealt with more general and foundational concepts in
asset pricing. This section will review a more specialized subtopic within
the larger body of literature. Stochastic dominance will be used to jus-
tify both previous and original discoveries regarding asset price bounds
throughout this thesis.

3.1 Stochastic Dominance

Stochastic Dominance is a term that describes a class of partial orderings
on random variables. This section will discuss three stochastic dominance
orderings in particular: statewise dominance, first-order dominance, and
second-order dominance.

Definition 3. Let (Ω,F ,P) be a probability space. If X and Y are mea-
surable random variables then X is said to Statewise Dominate Y if
X ≥ Y almost surely and X > Y with non-zero probability.

Definition 4. Let (Ω,F ,P) be a probability space. If X and Y are mea-
surable random variables then X is said to First-Order Dominate Y if
E[U(X)] ≥ E[U(Y )] for all non-decreasing functions U and E[U(X)] >
E[U(Y )] for some non-decreasing function U .

Definition 5. Let (Ω,F ,P) be a probability space. If X and Y are mea-
surable random variables then X is said to Second-Order Dominate
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Y if E[U(X)] ≥ E[U(Y )] for all non-decreasing concave functions U and
E[U(X)] > E[U(Y )] for some non-decreasing concave function U .

In finance, the term arbitrage is often used to describe a scenario in
which self-financing trading strategy that statewise dominates 0. In the
following sections, ”second-order stochastic dominance bounds” will refer
to bounds that rely on the assumption that investors behave in a way
that maximizes some utility function with an increasing and concave utility
function. That is, if one portfolio second-order dominates another, then the
former portfolio will cost more than the latter. The term second-order
stochastic dominance arbitrage to describes a scenario in which a self
financing trading strategy second-order dominates another self-financing
trading strategy.

3.2 Lattice Pricing

In the context of the asset pricing, a lattice can be thought of as the possible
prices for an asset after a given period. In particular, a lattice is used to
discretize the distribution of prices on a particular asset with a particular
time to maturity.

3.2.1 The Binomial Lattice

A binomial lattice is a lattice with only two outcomes. Consider a stock
whose price S after one period can be only one of two values: Su and Sd.
It’s price process can be described in discrete time by a binomial lattice. In
a complete market, the price of any call C can be replicated by a portfolio
containing the underlying asset and a riskless bond. Let Cu represent the
price of the call if S = Su and let Cd represent the price of the call if
S = Sd. Now consider a and b chosen so that


aSu − b(1 + r) = Cu

aSd − b(1 + r) = Cd

,

where r is the riskless rate. The above system of equations has a unique
solution for a and b. Therefore, there exists a replicating portfolio aS + b
for C wherein one buys a units of the stock and burrows $b at the riskless
rate. Observe that the system of equations has a unique solution if and
only if there are two possible values for S. Introducing a third outcome
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(and thus a third linearly independent equation) would make the system
unsolvable.

3.2.2 The Multinomial Lattice

Unfortunately, markets do not tend to be complete. To capture this lim-
itation in discrete-time, Ritchken models the potential outcomes with a
multinomial lattice (with greater than two outcomes). In practice, this
implies the representative investor cannot make revisions to their portfo-
lio arbitrarily quickly. In a single-period, the multinomial lattice gives n
possible outcomes {s1, ...., sn} for the price of the stock S and n possible
outcomes {c1, ..., cn} the call C. Though a unique no-arbitrage price on the
price of the call can no longer be derived, no-arbitrage bounds on the call
price can be derived.

3.3 Ritchken’s Bounds

3.3.1 No-arbitrage bounds

Ritchken[28] considered a discrete-time, discrete-space scenario, starting
with one-period period in discrete time: Let {s1, ..., sn} represent the pos-
sible stock prices after one period, where s1 < s2 < ... < sn. and let
{c1, ..., cn} be their corresponding prices on a call on the stock with strike
price x. The fundamental theorem of calculus states there exist risk neutral
probabilities {q1, ..., qn} and some constant factor r such that r−1

∑
i ciqi =

c and r−1
∑

i siqi = s, where s is the current price of the stock, and c is the
current price of a call. Now let {e1, ..., en} be a set of constants such that
ei := r−1qi. Then finding bounds on c is a matter of solving the following
optimization problems with the same constraints:

max
{ei}

c min
{ei}

c

subject to

c =
∑
i

ciei

∑
i

ei = r−1,
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∑
i

siei = s,

ei ≥ 0 ∀i.

The above optimization problems are what are known as linear program-
ming problems; their so-called dual problems are, respectively:

min
y1,y2

c max
y1,y2

c

subject to
c = y1s+ y2r

−1

y1si + y2 ≥ ci,∀i y1si + y2 ≤ ci,∀i.

The primal and dual problems have the some optimal solution for c. For
a given value of c, if there is a choice of {ei} and y1 and y2 such that the
former satisfies the constraints of the maximization (resp. minimization)
primal problem and the latter satisfies the constraints of the dual mini-
mization (maximization) problem then it follows that the optimal solution
to the primal maximization (minimization) problem is greater (less) than
c. However, the optimal solution to the dual minimization (maximization)
problem is less (greater) than c. Therefore, since the optimal solution to
both problems are the same, c must be the optimal solution. Therefore, to
find an optimal solution, it suffices to find a c in the feasible region of both
the primal and dual problem. Let

ej =



sj∗+1r
−1−s

sj∗+1−sj∗
, j = j∗

s−sj∗r−1

sj∗+1−sj∗
, j = j∗ + 1

0 otherwise

, ∀j,

where j∗ = arg max{sj∗ ≤ rs}. It satisfies the constraints of the pri-

mal problem since
∑

j ej =
sj∗+1r

−1−s
sj∗+1−sj∗

+
s−sj∗r−1

sj∗+1−sj∗
= r−1 and

∑
j ejsj =
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sj∗+1r
−1−s

sj∗+1−sj∗
sj∗ +

s−sj∗r−1

sj∗+1−sj∗
sj∗+1 = s. Furthermore,

c =
sj∗+1r

−1 − s
sj∗+1 − sj∗

cj∗ +
s− sj∗r−1

sj∗+1 − sj∗
cj∗+1

=
cj∗sj∗+1 − cj∗+1sj∗

sj∗+1 − sj∗
r−1 +

cj∗+1 − cj∗
sj∗+1 − sj∗

s.

Now let y1 =
cj∗+1−cj∗
sj∗+1−sj∗

, y2 =
cj∗sj∗+1−cj∗+1sj∗

sj∗+1−sj∗
and let R(si, sj) =

ci−cj
si−sj . Since

a call is convex in the stock price, by definition of convexity, cx2 ≤ tcx1 +(1−
t)cx3 for x3 ≥ x2 ≥ x1 and t chosen so that sx2 = tsx1 +(1−t)sx3 . Rearrang-
ing the former inequality, one arrives at t(cx3 − cx1) ≤ cx3 − cx2 . Dividing
both sides by sx3−sx2 = t(sx3−sx1), one arrives at R(sx1 , sx3) =

cx3−cx2

sx3−sx2
≥

cx3−cx1

sx3−sx1
= R(sx1 , sx2). Furthermore, rearranging the former equation differ-

ently, one also arrives at cx1 − cx2 ≥ (1− t)(cx1 − cx3). Diving both sides by
sx1−sx2 = (1−t)(sx1−sx3), one arrives at R(sx2 , sx1) =

cx1−cx2

sx1−sx2
≤ cx1−cx3

sx1−sx3
=

R(sx3 , sx1). R(si, sj) is non-decreasing in si for fixed sj when sj ≤ si or when

sj ≤ si. Therefore
ck−cj∗
sk−sj∗

= R(sk, sj∗) ≤ R(sj∗+1, sj∗) =
cj∗+1−cj∗
sj∗+1−sj∗

= y1

for k ≤ j∗ and
ck−cj∗
sk−sj∗

= R(sk, sj∗) ≥ R(sj∗+1, sj∗) =
cj∗+1−cj∗
sj∗+1−sj∗

= y1 for

k > j∗. The above inequalities imply ck ≥ cj∗ + y1sk −
cj∗+1sj∗−cj∗sj∗

sj∗+1−sj∗
=

y1sk +
cj∗sj∗+1−cj∗+1sj∗

sj∗+1−sj∗
= y1sk + y2 for all k. So the minimization problem

is solved and c =
sj∗+1r

−1−s
sj∗+1−sj∗

cj∗ +
s−sj∗r−1

sj∗+1−sj∗
cj∗+1 is a lower bound. Now let

ej =



snr−1−s
sn−s1 , j = 1

s−s1r−1

sn−s1 , j = n

0 otherwise

, ∀j.

Clearly this choice of ej’s satisfies the primal problem’s constraints. More-
over,

c =
snr
−1 − s

sn − s1

c1 +
s− s1r

−1

sn − s1

cn (3.1)

=
c1sn − cns1

sn − s1

r−1 +
cn − c1

sn − s1

s. (3.2)
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Now let y2 = c1sn−cns1
sn−s1 , y1 = cn−c1

sn−s1 . Observe that ck−c1
sk−s1

= R(sk, s1) ≤
R(sn, s1) = cn−c1

sn−s1 = y1 for all k. Then ck ≤ c1 + y1sk − cns1−c1s1
sn−s1 =

y1sk + c1sn−cns1
sn−s1 = y1sk + y2. So the maximization problem is solved and

c = snr−1−s
sn−s1 c1 + s−s1r−1

sn−s1 cn is an upper bound.

3.3.2 Continuous Space No-arbitrage bounds

Now consider the price of a call option where the underlying stock has a
continuous distribution. Assume the support for the price of the call in the
next time step is contain in the interval [smin, smax]. Observe that in the
discrete-space case, the upper bound c and lower bound c is

c =
snr
−1 − s

sn − s1

c1 +
s− s1r

−1

sn − s1

cn,

c =
sj∗+1r

−1 − s
sj∗+1 − sj∗

cj∗ +
s− sj∗r−1

sj∗+1 − sj∗
cj∗+1,

where sj denotes the jth possible stock price. Now, fix α > 0 and let

{P∆}∆∈(0,α] be a set of partitions such that P∆ = {s1, ..., sj∗(∆), sj∗(∆)+1, ..., sn(∆)},
where ∆ = max

j∈{1,...,n(∆)−1}
|sj+1 − sj|, s1 = smin, and sn(∆) = smax. Bounds

can be found for the continuous case by taking the limit of the bounds

as ∆ → 0. For any N ∈ N, there exists ε > 0 such that ∆ < ε implies

0 ≤ r − sj∗(∆)

s
< 2−N and 0 <

sj∗(∆)+1

s
− r < 2−N . Now let δ = r − sj∗(∆)

s

and let δ′ = r− sj∗(∆)

s
. If the strike price x is less than sr and 2−N < sr−x

then

c =
sj∗(∆)+1r

−1 − s
sj∗(∆)+1 − sj∗(∆)

cj∗(∆) +
s− sj∗(∆)r

−1

sj∗(∆)+1 − sj∗(∆)
cj∗(∆)+1

=
r−1s(r + δ′)− s

s(1 + δ′)− s(1− δ)
(s(r − δ)− x) +

s− r−1s(r − δ)
s(1 + δ′)− s(1− δ)

(s(r + δ′)− x)

=
r−1δ′

δ + δ′
s(r − δ) +

r−1δ

δ + δ′
s(r + δ′)− xr−1

=s− xr−1.

Alternatively, if x exceeds sr then c = 0 if 2−N < x− sr. Finally, if x = sr
then c = r−1δ

δ+δ′
(s(r+ δ′)−x) = r−1δδ′

δ+δ′
s. Observe that 0 ≤ r−1δδ′

δ+δ′
s ≤ r−1s2−N .

So, for general x, max(0, s − x
r
) ≤ c ≤ max(0, s − x

r
) + r−1s2−N . Since
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N can be arbitrarily large lim∆→0 c = max(0, s − x
r
). However, c remains

the same in the continuous case since sn(∆) and s1 remain unchanged as ∆
approaches 0. Also, if s1 = 0 then c = s− xs

smax
.

3.3.3 Discrete Time Bounds with Multiple Revision

Opportunities

This section will use subscripts to denote time steps. If the representative

investor has M revision opportunities then, for a fixed stock price s(m) at

time step m, the price of a call c(m) at the mth time step is

s
(m+1)
n r−1 − s(m)

s
(m+1)
n − s(m+1)

1

c
(m+1)
1 +

s(m) − s(m+1)
1 r−1

s
(m+1)
n − s(m+1)

1

c(m+1)
n ≥ c ≥

s
(m+1)
j∗+1 r−1 − s(m)

s
(m+1)
j∗+1 − s

(m+1)
j∗

c
(m+1)
j∗ +

s(m) − s(m+1)
j∗ r−1

s
(m+1)
j∗+1 − s

(m+1)
j∗

c
(m+1)
j∗+1 .

However, observe that s
(m+1)
n r−1−s(m)

s
(m+1)
n −s(m+1)

1

c
(m+1)
1 +

s(m)−s(m+1)
1 r−1

s
(m+1)
n −s(m+1)

1

c
(m+1)
n ≤ s

(m+1)
n r−1−s(m)

s
(m+1)
n −s(m+1)

1

c
(m+1)
1 +

s(m)−s(m+1)
1 r−1

s
(m+1)
n −s(m+1)

1

c(m+1)
n and

s
(m+1)
j∗+1

r−1−s(m)

s
(m+1)
j∗+1

−s(m+1)
j∗

c
(m+1)
j∗ +

s(m)−s(m+1)
j∗ r−1

s
(m+1)
j∗+1

−s(m+1)
j∗

c
(m+1)
j∗+1 ≥

s
(m+1)
j∗+1

r−1−s(m)

s
(m+1)
j∗+1

−s(m+1)
j∗

c
(m+1)
j∗ +

s(m)−s(m+1)
j∗ r−1

s
(m+1)
j∗+1

−s(m+1)
j∗

c
(m+1)
j∗+1 . So let

c(m) =
s

(m+1)
n r−1 − s(m)

s
(m+1)
n − s(m+1)

1

c
(m+1)
1 +

s(m) − s(m+1)
1 r−1

s
(m+1)
n − s(m+1)

1

c(m+1)
n

and let

c(m) =
s

(m+1)
j∗+1 r−1 − s(m)

s
(m+1)
j∗+1 − s

(m+1)
j∗

c
(m+1)
j∗ +

s(m) − s(m+1)
j∗ r−1

s
(m+1)
j∗+1 − s

(m+1)
j∗

c
(m+1)
j∗+1 .

Continuing inductively in this way, one arrives at

c(0) = r−M
M∑
j=1

(
M

j

)
θj(1− θ)M−j max

[
0, (

s
(1)
n

s(0)
)j(
s

(1)
1

s(0)
)N−js− x

]
,

c(0) = r−M
M∑
j=1

(
M

j

)
αj(1− α)M−j max

[
0, (

s
(1)
j∗+1

s(0)
)j(
s

(1)
j∗

s(0)
)N−js− x

]
,
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where θ =
s(0)−s(1)

1 r−1

s
(1)
n −s

(1)
1

and α =
s(0)−s(1)

j∗ r
−1

s
(1)
j∗+1

−s(1)
j∗
.

3.3.4 Stochastic Dominance Option Bounds

Ritchken[28] derives bounds on the price of a call when the representa-
tive investor has a concave utility function. As explained in section 2.2,
the current price of a given underlying asset S0 can be described by the
time discounted expectation S0 = r−1E[DS], where S is the price of the
asset after one period, r is the riskless discount factor, and D = D(S)
is the stochastic discount factor measurable S. Under the multinomial
lattice, D and S have finite range. It is also assumed consumption in-
creases in the stock price (in other words, the stock has positive corre-
lation with the general level of wealth in the economy). Moreover, un-

der the consumption-based model[31], D = u′(K)
E[u′(K)]

, where K is consump-

tion. A security is said to be a positive beta security if E[K|S] is non-
decreasing in S. Since u is concave and non-decreasing, D is positive and
non-increasing in consumption. Therefore, E[D|S] is non-increasing in S
if S describes the payoff of a positive beta security. Therefore, for any
option on S with payoff f(S) =: C, the current price C0 of the option
is C0 = r−1E[Df(S)] = r−1E[E[D|S]f(S)], where E[D|S] is positive non-

increasing in S, r−1E[E[D|S]S] = r−1E[DS] = S0, and E[D] = E[u′(K)]
E[u′(K)]

= 1.
Therefore, after one period in discrete probability space, the upper bound
and lower bound for the price of a call on a positive-beta security is given
by solving the following two linear programming problems:

max
{di}

c min
{di}

c,

with constraints
c =

∑
i

cipidi

∑
i

pidi = r−1,

∑
i

sipidi = s,

d1 ≥ d2 ≥ ... ≥ dn ≥ 0,

where pi is the probability of state i occurring, di is the discount rate if
state i occurs, and si+1 > si,∀i. Set wi = di − di+1, i = 1, ..., n − 1 and
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wn = dn. Then the problem can be restated:

max
{wi}

(min
{wi}

)c =
n∑
j=1

(

j∑
i=1

cipi)wj,

with constraints
n∑
j=0

(

j∑
i=1

pi)wj = r−1,

n∑
j=0

(

j∑
i=1

sipi)wj = s,

wj ≥ 0, ∀j.

Now let vi = (
∑i

j=1 pj)wj. Then the problem can be restated again:

max
{vi}

(min
{vi}

)c =
n∑
j=1

ĉjvj,

with constraints
n∑
j=0

vj = r−1,

n∑
j=0

ŝjwj = s,

wj ≥ 0, ∀j,

where ĉj =
∑j
i=1 pici∑j
i=1 pi

and ŝj =
∑j
i=1 pisi∑j
i=1 pi

. But this resembles the no-arbitrage

linear programming problem. Based on the solutions to the no-arbitrage
problem, one arrives at the following result find for the lower bound c and
upper bound c:

c = r−1(θ̂ĉn + (1− θ̂)ĉ1),

c = r−1(α̂ĉh+1 + (1− α̂)ĉh),

where ĉj =
∑
i≤j pici∑
i≤j pi

, θ̂ = sr−ŝ1
ŝn−ŝ1 , α̂ = sr−ŝh

ŝh+1−ŝh
, h = max{j : ŝj < sr}.
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3.3.5 Continuous Space Stochastic Dominance Bounds

Let the random variable C represent the payoff of a call at expiry. Let the

continuous random variable S represent the stock price at expiry, let s̄ be

some constant such that E[S|S < s̄] = sr. To obtain the bounds, one can

do something similar to what was done in section 3.3.3 for the no-arbitrage

bounds, where the limit over discrete space was taken. Fix α > 0 and con-

sider a set of partitions {P∆}∆∈(0,α] such that P∆ = {s1, ..., sh(∆), sh(∆)+1, ..., sn(∆)}
discretizes the range of S with a corresponding set of probabilites {p1, ..., pn(∆)}
that discretizes the distribution of S over the first lattice. Furthermore,

construct a lattice {c1, ..., cn(∆)} such that cj = (sj − x)+, where x is the

strike price, for all j. Let ĉj and ŝj be defined as in the previous section for

all j and let ∆ := max
j∈{1,...,n−1}

|sj+1−sj|. Bounds can be found for the contin-

uous case by taking the limit of the bounds as ∆→ 0. For any N ∈ N, there

exists ε > 0 such that ∆ < ε implies 0 ≤ r− ŝh
s
< 2−N , 0 < ŝh+1

s
− r < 2−N ,

0 ≤ ĉh+1 − E[C|S < s̄] < 2−N 0 ≤ E[C|S < s̄] − ch < 2−N , where the last

two inequalities hold because the call price is continuous in the stock price.

Now define constants δ, δ′, ε′, ε′′ > 0 such that r − ŝh
s

=: δ, ŝh+1

s
− r =: δ′,

ĉh+1 − E[C|S < s̄] =: ε′, and E[C|S < s̄]− ch =: ε′′. Then, by the previous

section, the lower bound price is

c =
r−1s(r + δ′)− s

s(1 + δ′)− s(1− δ)
(E[C|S < s̄] + ε′) +

s− r−1s(r − δ)
s(1 + δ′)− s(1− δ)

(E[C|S < s̄]− ε′′)

=r−1E[C|S < s̄] +
r−1s(δ′ε′ + δε′′)

δ′ + δ
.

But 0 ≤ r−1s(δ′ε′+δε′)
δ′+δ

≤ r−1s2−N+1. So r−1E[C|S < s̄] ≤ c ≤ r−1E[C|S <

s̄] + r−1s2−N+1. Since N can be arbitrarily large, this yields lim
∆→0

c =

r−1E[C|S < s̄].

For the upper bound, fix s1 = inf S. Then for any N ∈ N, there ex-

ists ε > 0 such that ∆ < ε implies there exists −2−N ≤ δ < 2−N and

−2−N ≤ δ′ < 2−N such that E[S
s
] − ŝn

s
= δ and E[C

s
] − ĉn

s
= δ′ where the

second inequality holds because the call price is continuous in the stock
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price. Then the upper bound price is

c =
s− r−1 inf S

E[S]− sδ − inf S
E[C] +

r−1E[S]− s
E[S]− sδ − inf S

inf C.

So

c ∈
[

s− r−1 inf S

E[S]− s2−N − inf S
E[C] +

r−1E[S]− s
E[S]− s2−N − inf S

inf C,
s− r−1 inf S

E[S] + s2−N − inf S
E[C] +

r−1E[S]− s
E[S] + s2−N − inf S

inf C

]

∪
[

s− r−1 inf S

E[S] + s2−N − inf S
E[C] +

r−1E[S]− s
E[S] + s2−N − inf S

inf C,
s− r−1 inf S

E[S]− s2−N − inf S
E[C] +

r−1E[S]− s
E[S]− s2−N − inf S

inf C

]
.

Since N can be arbitrarily large, lim
∆→0

c = s−r−1 inf S
E[S]−inf S

E[C] + r−1E[S]−s
E[S]−inf S

inf C.

Observe that the risk-neutral CDFs G,G implied by the lower and upper
bounds, respectively, are

G(x) =
min[F (s̄), F (x)]

F (s̄)
,

G(x) = θF (x) + (r−1 − θ)χx>inf S,

where θ = s−r−1 inf S
E[S]−inf S

and F is the physical CDF. Furthermore, the lower D

and upper D bound time-discounted pricing kernels are given by

D =
χS<s̄

rP(S < s̄)

D = θ +
r−1 − θ
f(inf S)

δinf S,

where δx is the dirac-delta function centered at x and f is the physical
PDF.

3.3.6 Multiple Revision Opportunities

When there are multiple portfolio revision opportunities before the expiry

date, the price process of the underlying asset S = (Si : i = 0, 1, ...,m)

can be modeled as a multiple-period discrete-time geometric process with

stationary and independent increments adapted to the filtration (Fi : i =

1, ...,m). Define a stochastic process C = (Ci : i = 0, 1, ...,m) such that
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Ci = Ci(Si) is measurable in Si. To find bounds on C0 under a multi-

period process, one can iteratively solve the linear programming problem

in section 3.3.4, starting from i = m and returning to i = 0. Therefore one

obtains the following inequalities from the upper and lower bounds:

C0 ≤ E[D1C1(S1)] = E[D1E[D2C2(S2)|F1]] = E[D1E[D2....E[DmCm(Sm)|Fm]...F1]] = E[D1D2....DmCm(Sm)] = E[DCm(Sm)]

C0 ≥ E[D1C1(S1)] = E[D1E[D2C2(S2)|F1]] = E[D1E[D2....E[DmCm(Sm)|Fm]...F1]] = E[D1D2....DmCm(Sm)] = E[DCm(Sm)],

where D :=
∏m

i=1Di and D :=
∏m

i=1 Di, where Di and Di are Fi measur-
able for i = 1, ...,m. They are also iid since S is (geometrically) station-
ary with independent increments. Therefore, stochastic dominance bounds
with multiple revision opportunities may be obtained iteratively as well.

3.4 Risk-Neutral Processes

Let the constant T represent the expiry time of a call and let ∆t > 0 rep-
resent some time increment. Define a probability space (Ω,F ,P) equipped
with the filtration F := {Ft}t∈[0,T ]. Et[·] will represent the expectation op-
erator conditional on the filtration at time t. Unless stated otherwise, all
stochastic processes will be adapted to the filtration F. In the following
section, it will be shown that certain discrete-time processes converge to
certain infinitesimal-time processes in the limit as the change in time goes
to 0. Let s

(n)

t
(n)
k

represent a sequence of discrete-time processes indexed by n

at time t
(n)
k , where k ∈ {0, ...,mn}, where 0 = t

(n)
0 < t

(n)
1 < ... < t

(n)
mn = T

and maxk∈{1,...,mn} |t
(n)
k − t

(n)
k−1| → 0 as n→∞. Observe that convergence in

distribution is equivalent to weak convergence. So, for any r ∈ [0, T ], let h

be some index such that t
(n)
h = min{t ∈ {t(n)

0 , ..., t
(n)
mn} : t ≥ r} for any n.

Then

s0+ lim
n→∞

h∑
k=1

(s
(n)

t
(n)
k

−s(n)

t
(n)
k−1

)
d
= s0+

∫ r

0

dst ⇔ lim
n→∞

E[f(s0+
h∑
k=1

(s
(n)
tk
−s(n)

tk−1
))] = E[f(s0+

∫ r

0

dst)],

for any continuous bounded function f.Now, for any fixed n, define {t(n)
0 , ..., t

(n)
mn}

so that T
mn

= tk − tk−1 =: ∆tn for all k ∈ {1, ...,mn}. Since the number of

terms in the sum is increasing linearly in 1
∆tn

, each term in the sum must
converge faster than linearly in ∆tn. In other words, the discrete-time pro-
cess converges to the corresponding continuous-time process if and only if,
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for every k,

E[∆f
(n)
k −

∫ tk−1+∆tn

tk−1

df ] = o(∆tn),

where ∆f
(n)
n = f(s0 +

∑k
j=1(s

(n)

t
(n)
j

− s(n)
tj−1

))− f(s0 +
∑k−1

j=1(s
(n)

t
(n)
j

− s(n)

t
(n)
j−1

)) and

df(st) = f(st + dst)− f(st). Therefore, the discrete-time process converges
to the corresponding continuous-time process if and only if

lim
n→∞

E[
∆f

(n)

t
(n)
k

∆tn
] = E[

df(st)

dt
],

where t
(n)
k = max{r ∈ {t(n)

0 , ..., t
(n)
mn} : r ≤ t}. Now let N : R+ → N be

some non-increasing function such that N(∆t) = n when ∆tn = ∆t. Then
the discrete time process converges in distribution to the continuous time
process if and only if

lim
∆t→0

E[
∆f

(N(∆t))

t
(n)
k

∆t
] = E[

df(st)

dt
].

Now, fix ∆t = ∆tn and fix t ∈ {t(n)
0 , ..., t

(n)
mn}. Define the operator Ast∆t such

that

Astf := lim
n→∞

Et[f(s
(n)
t+∆t)]− f(s

(n)
t )

∆t
.

Then, since weak convergence is equivalent to convergence in distribution
it must hold that for any closed and bounded f, Astf = Et[dfdt ] if and

only if s0 +
∑h

k=1(s
(N(∆t))

t
(N(∆t))
k

− s
(N(∆t))

t
(N(∆t))
k−1

)
d→ s0 +

∫ r
0
dst as ∆t → 0. For fu-

ture reference, this is the kind of convergence being referred to when it
is said that s

(n)

t
(n)
k

− s
(n)

t
(n)
k−1

“converges to” some infinitesimal dst or when it

is said that dst is “the limit” of s
(n)

t
(n)
k

− s
(n)

t
(n)
k−1

as ∆t → 0. Furthermore,

for notational simplicity, from now on, fix some value t in [0, T ) and

some small ∆t > 0, and let st+∆t := s
(N(∆t))

t
(N(∆t))
k

and st := s
(N(∆t))

t
(N(∆t))
k−1

, where

t
(N(∆t))
k−1 = max{r ∈ {t(n)

0 , ..., t
(n)
mN(∆t)} : r ≤ t}.

Now, the Stone-Weierstrass Theorem states that the space of smooth func-
tions on R is dense on the space of continuous bounded functions on R
under the uniform norm. So, for any continuous bounded f with support
on R, there exists a sequence {fn}∞n=1 of smooth functions that converges
uniformly on any compact set, and therefore pointwise on R, to f. So, if
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Astf = Et[dfdt ] for any smooth f then, for any continuous and bounded f ,

Astf = Ast lim
n→∞

fn = lim
n→∞

Astfn = lim
n→∞

Et[
dfn
dt

] = lim
n→∞

Et[
dfn
dt

] = Et[ lim
n→∞

dfn
dt

] = Et[
df

dt
].

Therefore, Astf = Et[dfdt ] for smooth f is a sufficient condition for conver-
gence in distribution to the corresponding infinitesimal.
Observe, from Ito’s lemma for a geometric Weiner processes with drift, if
f is smooth, then

Et[
df

dt
] = µf ′(st)st + σ2s2

tf
′′(st),

where µ and σ2 are the drift and variance, respectively, of the Weiner
process. According to Merton[24], ∆st satisfies the Lindeberg condition if,
for all δ > 0, 1

∆t

∫
|x|>δ dP[∆st = x] → 0 as ∆t → 0. This is a sufficient

condition for ∆st
∆t

to converge to a Gaussian random variable as ∆t→ 0. If
∆st satisfies the Lindeberg condition for all t in the simplex then

Astf = lim
∆t→0

(
f ′(st)Et[∆st]

∆t
+

1

2

f ′′(st)Et[∆s2
t ]

∆t
+O(

∆s3
t

∆t
))

= lim
∆t→0

(f ′(st)Et[
∆st
∆t

] +
1

2

f ′′(st)Var([∆st])

∆t
+

1

2

f ′′(st)Et[∆st]2

∆t
+O(Et[

∆s3
t

∆t
]))

=f ′(st)µ+
1

2
σ2f ′′(st),

where µ = lim
∆t→0

Et[∆st
∆t

], σ2 = lim
∆t→0

Var(∆st)
∆t

, and the other terms cancel

because the moments of the normal distribution require Et[∆st]2 = O(∆t2)

and O(Et[∆s3t
∆t

]) = O(∆t1/2). And so ∆s converges to a diffusive SDE. For
a Jump-Diffusion process of the form

dst = µstdt+ σstdwt + JtstdNt,

where J is an independent jump size and dNt is an independent Poisson
process differential, it follows from Ito’s Lemma for Jump-Diffusive pro-
cesses that, for any function f ,

Et[
df

dt
] = µf ′(st)st + σ2s2

tf
′′(st) + λEt[f((1 + Jt)st)− f(st)].
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Given some Ft-measurable pricing kernel Dt,t+∆t, define a function γt :
R+ × Ω → R+ such that γt(x, ·) =: γt(x) is Ft-measurable for any x ∈ R
and γt(x) = {Dt,t+∆t|st+∆t = x}. Then

Et[Dt,t+∆tf(st+∆t)] =

∫ ∞
0

γt(x)f(x)pt(x)dx = R−∆t

∫ ∞
0

f(x)qt(x)dx,

where pt is the Ft-measurable physical density of st+∆t conditioning on st
and qt := R∆tγtpt is also a density since

R−∆t = E[Dt,t+∆t] =

∫ ∞
0

γ(x)p(x)dx = R−∆t

∫ ∞
0

q(x)dx.

Rearranging yields
∫∞

0
q(x)dx = 1. Also, it follows that q > 0 because

γ > 0. So define a new random variable sqt+∆t that is measurable in st+∆t

and has density q. Define the risk-neutral process differential dsqt as the
limit of sqt+∆t − st as ∆t→ 0. The goal of the following sections will be to
find the risk-neutral process differentials generated by the upper and lower
bound pricing kernels given a specified physical process differential.

3.4.1 Diffusive Risk-Neutral Bound Process

Let
st+∆t = st + µ(st, t)∆t+ σ(st, t)B

√
∆t,

where

B =


1 with probability 1

2

−1 with probability 1
2

is independent of st and µ, σ > 0 are deterministic functions. Let p∆t(x, ·)
be the PDF of st+∆t given st = x. It can be observed that, for any
δ > 0, st+∆t − st ≤ µ(st, t)∆t + σ(st, t)

√
∆t < δ almost surely when

∆t ∈ (0,
(−σ+
√
σ2+4µδ)2

4µ2 ). Since
(−σ+
√
σ2+dµδ)2

4µ2 > 0, the interval is non-

empty. Therefore,
∫
|y−x|>δ p∆t(x, y)dy = 0 for positive ∆t small enough.

So the process satisfies the Lindeberg condition and converges to a dif-
fusive process as ∆t → 0. Observe that Et[st+∆t − st] = µ(st, t)∆t and
Vart(st+∆t − st) = σ2(st, t)∆t. So the discrete time-process converges to a
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continuous-time process with the following differential:

dst = µ(st, t)dt+ σ(st, t)dwt,

where wt is a Weiner process at time t. Now let sut be the risk-neutral
process at time t. Observe that the upper bound pricing kernel mt,t+∆t

at time t for a random variable measurable at time t + ∆t is described
by mt,t+∆t = θ(st, t) + R−∆t−θ(st,t)

p(st,inft st+∆t)
δinf st+∆t

, where R is the riskless discount

factor, θ = st−R−∆t inft st+∆t

Et[st+∆t]−inft st+∆t
, and δx is the dirac-delta function at x. Observe

that if sut+∆t = R∆tmt,t+∆tst+∆t. Then

sut+∆t =st + µ(st, t)∆t+R∆tθ(st, t)σ(st, t)B
√

∆t− (1−R∆tθ(st, t))σ(st, t)
√

∆t

d
=st + µ(st, t)∆t+ σ(st, t)B

u
√

∆t,

where

Bu =


2R∆tθ(st, t)− 1 with probability 1

2

−1 with probability 1
2

and

θ(st, t) =
st −R−∆t(st + µ(st, t)∆t− σ(st, t)

√
∆t)

st + µ(st, t)∆t− (st + µ(st, t)∆t− σ(st, t)
√

∆t)

=
(1−R−∆t)− R−∆tµ(st,t)

st
∆t− R−∆tσ(st,t)

st

√
∆t

−σ(st,t)
st

√
∆t

=
(R−∆t − 1) + R−∆tµ(st,t)

st
∆t

σ(st,t)
st

√
∆t

+R−∆t.

Observe that θ → 0 as δ → 0, so B first-order dominates Bu for ∆t small
enough. Moreover, by symmetry, −B also first-order dominates Bu for
∆t small enough. Therefore, if q∆t(x, ·) is the risk-neutral density of sut+∆t

given st = x then, for all δ > 0,
∫
|y−x|>δ q∆(x, y)dy ≤

∫
|y−x|>δ p∆(x, y)dy for

∆t small enough. Therefore, sut+∆t also satisfies the Lindeberg condition.
Observe that Et[sut+∆t − st] = R∆t − 1 = rst∆t + O(∆t2), where r = lnR
is the instantaneous riskless rate, and Var(sut+∆t− st) = σ2(st, t)∆t. So the

40



risk-neutral process is

dsut = rstdt+ σ(st, t)dwt.

Now let
st+∆t = st + µ(st, t)∆t+ σ(st, t)Z

√
∆t,

where Z is a standard normal random variable. Then pt,t+∆(x, y) = 1√
2πσ(st,t)2∆t

e
− (y−x−µ(st,t)∆t)

2

2σ(st,t)
2∆t

and

lim
∆t→0

1

∆t

∫
|y−x|>δ

1√
2πσ(st, t)2∆t

e
− (y−x−µ(st,t)∆t)

2

2σ(st,t)
2∆t dy =

∫ ∞
δ

lim
∆t→0

1√
2πσ(st, t)2∆t3

e
− (u−µ(st,t)∆t)

2

2σ(st,t)
2∆t du

+

∫ δ

−∞
lim

∆t→0

1√
2πσ(st, t)2∆t3

e
− (u−µ(st,t)∆t)

2

2σ(st,t)
2∆t du

=

∫ ∞
δ

lim
M→∞

M
3
2√

2πσ(st, t)
e
− (uM2−µ(st,t)M)2

2σ(st,t)
2 du

+

∫ δ

−∞
lim
M→∞

M
3
2√

2πσ(st, t)
e
− (uM2−µ(st,t)M)2

2σ(st,t)
2 du

=

∫ ∞
δ

lim
M→∞

M
3
2√

2πσ(st, t)
e
− u2M4

2σ(st,t)
2 +O(M3)

du

+

∫ δ

−∞
lim
M→∞

M
3
2√

2πσ(st, t)
e
− u2M4

2σ(st,t)
2 +O(M3)

du

=0,

where the limit can be taken inside the integral because the inside is
integrable for any ∆t > 0, as well as in the limit as ∆t approaches 0.
Therefore the discrete-time process satisfies the Lindeberg condition. Since
the process has mean st + µ(st, t)∆t and variance σ2(st, t)∆t, it converges
to a process with the following differential:

ds = µ(st, t)dt+ σ(st, t)dwt.

The lower bound pricing kernel dt,t+∆t at time t for a stock measurable at

time t + ∆t is given by dt,t+∆ =
χst+∆t≤s∗

R∆tP[st+∆t≤s∗]
, where s∗ is chosen so that
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E[R∆tdt,t+∆st+∆t] = R∆tst. If sqt is the risk-neutral process at time t then

sqt+∆t =R∆tdt,t+∆tst+∆t

=st + µ(st, t)∆t+ σ(st, t)Z̃
√

∆t,

where Z̃ = ZχZ<z̄
P[Z<z̄]

, where z̄ is chosen so that

st + µ(st, t)∆t+ σ(st, t)E[Z̃]
√

∆t = R∆tst.

Observe,

1√
2π

∫ z̄

−∞
ze−

z2

2 dz = E[Z̃] =
(R∆t − 1)st − µ(st, t)∆t

σ(st, t)
√

∆t
= (

rst − µ(st, t)

σ(st, t)
)
√

∆t+O(∆t),

which goes to 0 = E[Z] as ∆t→ 0. Moreover,

z̄ ≥ E[ZχZ≤z̄]

P[Z ≤ z̄]
= E[Z̃] = (

rst − µ(st, t)

σ(st, t)
)
√

∆t+O(∆t).

These two facts imply that z̄ →∞ as ∆t→ 0 and so

Var(Z̃) =
1√
2π

∫ z̄

−∞
z2e−

z2

2 dz − (
1√
2π

∫ z̄

−∞
ze−

z2

2 dz)2 ∆t→0→ 1,

which implies Var(Z̃) = 1 + o(1). Therefore,

Var(st+∆t) =σ(st, t)
2Var(Z̃)∆t

=σ(st, t)
2∆t(1 + o(1))

=σ(st, t)
2∆t+ o(∆t).

Therefore, the lower-bound risk-neutral process is

dsqt = rstdt+ σ(st, t)dwt,
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which agrees with the upper bound process.

3.4.2 Risk-Neutral Jump Diffusion Processes

Let

st+∆t = st+(µ(st, t)−k(st, t)λ)∆t(1−∆N)+σ(st, t)B
√

∆t(1−∆N)+J∆N,

where B is defined as in the previous section, ∆N ∼ binom(λ∆t) and is
independent of B and J is a continuous with mean k(st, t) and is indepen-
dent of B and ∆N. Observe that if p(x, ·) is the PDF of st+∆t given that
st = x, pD(x, ·) is the PDF of st+∆t given ∆N = 0 and st = x, and pJ is
the PDF of J then

1

∆t

∫
|y−x|>δ

p(x, y)dy = (
1

∆t
− λ)

∫
|y−x|>δ

pD(x, y)dy + λ

∫
|y|>δ

pJ(y)dy.

As demonstrated in the previous section, the first term in the above sum
goes to 0 as ∆t goes to 0.However, since J is independent of ∆t,

∫
|y|>δ pJ(y)dy >

0 for some δ ∈ (0,min[| sup J |, | inf J |]) as ∆t → 0 and so the Lindeberg
condition is violated. However, it can be seen that

st + (µ(st, t)− k(st, t)λ)∆t(1−∆N) + σ(st, t)Z
√

∆t(1−∆N)

still satisfies the Lindeberg condition and has mean st+(µ(st, t)−k(st, t)λ)∆t+
O(∆t3/2) and variance σ2(st, t)∆t+O(∆t3/2). Moreover, observe that J is
independent of ∆t and P[∆N = 1] scales linearly with ∆t. Now, define the
following discrete-time processes:

sJt+∆t = st + J∆N

sDt+∆t = st + (µ(st, t)− k(st, t)λ)∆t(1−∆N) + σ(st, t)
2B
√

∆t(1−∆N)
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Also, for any smooth f,

AsJt f = lim
∆t→0+

E[f(st + J∆N)− f(st)]

∆t

= lim
∆t→0+

λ∆t
E[f(st + J)− f(st)]

∆t

=λE[f(st + J)− f(st)]

which, as discussed earlier, is the infinitesimal generator for a pure Jump
process (i.e., a Jump-Diffusion process when σ = µ − k(st, t)λ = 0) with
Jump intensity λdt and Jump size J . Therefore,

sJt+∆t − st → JdN =: dsJt .

Moreover, since the diffusive part satisfies the Lindeberg condition,

sDt+∆t − st → (µ(st, t)− k(st, t)λ)dt+ σ(st, t)dwt =: dsDt .

Moreover, observe that

st+∆t−st = (sDt+∆t−st)+(sJt+∆t−st)→ dsDt +dsJt = (µ(st, t)−k(st, t)λ)dt+σ(st, t)dwt+JdN,

which is a Jump-Diffusion process where dN ∼ binom(λdt). Observe that
the above process is a Jump-Diffusion process. Also observe that if ∆t is
small enough then inf st+∆t = st + (µ(st, t)− k(st, t)λ)∆t+ inf J as long as
inf J < 0. So, for the upper bound risk-neutral process,

sut+∆t =


st + (µ(st, t)− k(st, t)λ)∆t(1−∆N) + σ(st, t)B

√
∆t(1−∆N) + J∆N with probability R∆tθ

st + inf J with probability 1−R∆tθ

=


st + (µ(st, t)− k(st, t)λ)∆t+ σ(st, t)B

√
∆t with probability R∆tθ(1− λ∆t)

st + J with probability R∆tθλ∆t

st + inf J with probability 1−R∆tθ

=st + (µ(st, t)− k(st, t)λ)∆t(1−∆Ñ) + σ(st, t)B
√

∆t(1−∆Ñ) + J̃∆Ñ
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where ∆Ñ ∼ binom(1−R∆tθ + λR∆tθ∆t) and

J̃ =


J with probability R∆tθλ∆t

1−R∆tθ+λR∆tθ∆t

inf J with probability 1−R∆tθ
1−R∆tθ+λR∆tθ∆t

,

where

R∆tθ =R∆tθ(st, t)

=R∆t(
st −R−∆t(st + µ(st, t)∆t+ inf J)

st + µ(st, t)∆t− (st + µ(st, t)∆t+ inf J)
)

=R∆t(
(1−R−∆t)− R−∆tµ(st,t)

st
∆t− R−∆t inf J

st

− inf J
st

)

=R∆t(
(R−∆t − 1) + R−∆tµ(st,t)

st
∆t

inf J
st

+R−∆t)

=
(1−R∆t)st + µ(st, t)∆t

inf J
+ 1

=1 +
µ(st, t)− rs

inf J
∆t+O(∆t2).

Therefore, ∆Ñ ∼ binom( rs−µ(st,t)+λ inf J
inf J

∆t+O(∆t2)) and

J̃ =


J with probability λ inf J

λ inf J+rs−µ(st,t)
+O(∆t)

inf J with probability rs−µ(st,t)
λ inf J+rs−µ(st,t)

+O(∆t)

.

Observe that the diffusive part is independent of the parameters of ∆Ñ and
so converges to the same Weiner process as before. Furthermore, observe
that the infinitesimal generator of

sJ̃t+∆t = st + J̃∆N
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is given by

AsJ̃t f = lim
∆t→0+

E[f(st + J̃∆N)− f(st)]

∆t

= lim
∆t→0+

λu∆t
E[f(st + J̃)− f(st)] +O(∆t)

∆t

=λu lim
∆t→0+

E[f(st + J̃)− f(st)] +O(∆t)

=λuE[f(st + Ju)− f(st)]

where

Ju =


J with probability λ inf J

λ inf J+rs−µ(st,t)

inf J with probability rs−µ(st,t)
λ inf J+rs−µ(st,t)

and λu = rs−µ(st,t)+λ inf J
inf J

, which is the infinitesimal generator for a process
with jump intensity λudt and jump size Ju. Therefore, sut+∆t− st converges
to

dsu = (µ(st, t)− k(st, t)λ)dt+ σ(st, t)dwt + JudÑ,

where dÑ ∼ binom(λudt).Observe that E[JudÑ ] = (rs−µ(st, t)+k(st, t)λ)dt

and thus E[dsu] = rsdt, so the process is indeed risk-neutral. So, by Ito’s

Lemma for Jump-Diffusion Processes, if dsut is the risk-neutral process dif-

ferential, and f : R2 → R is some smooth function then

Et[f(st + dsut , t+ dt)− f(st, t)] = (
∂f

∂t
+µ(st, t)

∂f

∂x
+σ(st, t)

2 ∂
2f

∂x2
+λuEt[f(st+J

u)−f(st)])dt = rf(st, t)dt.

Rearranging, one arrives at the following PDE:

∂f

∂t
+ µ(st, t)

∂f

∂st
+ σ(st, t)

2∂
2f

∂s2
t

+ λuEt[f(st + Ju)− f(st)]− rf = 0. (3.3)

This generates the following Theorem:

Theorem 5 (Perrakis). Fix t < T , let st be represent the Jump-Diffusion
process 3.4.2, and let f : R2 → R be some smooth function, convex in
the first argument, such that f(sT , T ) = g(sT ) and there exists a ran-
dom variable D, measurable in dst, such that Et[Ddst] = 0,Et[D] = 1 −
rdt,Et[Df(st+dt, t+dt)] = f(st, t), and D is decreasing in dst. If f : R2 → R
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solves (3.3) with boundary condition f(sT , T ) = g(sT ) then f(st, t) ≥
f(st, t).

Also observe that the PDE (3.3) is Merton’s PDE when µ(st, t) =
µst, σ(st, t) = σst, λ = λu, k(st, t) = kst, and Ju = (Jt − 1)st.
If ∆t is small enough, the lower bound discrete-time risk-neutral process is
given by

sqt+∆t = st + (µ(st, t)− kλ)∆t(1−∆N) + σ(st, t)B
√

∆t(1−∆N) + Ĵ∆N,

where Ĵ = {J |J ≤ j̄} where j̄ are chosen so that

E[sdt+∆t] = st + µ(st, t)∆t(1− λ∆t) + E[J̃ ]λ∆t = R∆tst.

Then E[Ĵ ] = (R∆t−1)st−µ(st,t)∆t−λk(st,t)∆t2

λ∆t
= rst−µ(st,t)+k(st,t)λ

λ
+ o(1). So the

infinitesimal generator for the Jump component of the lower bound process
is given by

AsĴt f = lim
∆t→0+

E[f(st + Ĵ∆N)− f(st)]

∆t

=λ∆t
E[f(st + Ĵ)− f(st)] +O(∆t)

∆t

=λE[f(st + lim
∆t→0+

Ĵ)− f(st)] + lim
∆t→0+

O(∆t)

=λE[f(st + J l)− f(st)],

where J l = lim
∆t→0+

Ĵ = lim
∆t→0+

{J |J < j̄} = {J |J < jl}, where the third

equality holds because {J |J < j̄} is continuous in j̄, since J is a continuous
random variable. jl is chosen so that

E[J l] =E[ lim
∆t→0+

Ĵ ]

= lim
∆t→0+

(R∆t − 1)st − µ(st, t)∆t− λk(st, t)∆t
2

λ∆t

= lim
∆t→0+

rst − µ(st, t) + k(st, t)λ

λ
+ o(1)

=
rst − µ(st, t) + k(st, t)λ

λ
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Therefore, the lower bound risk-neutral process is given by

dsq = (µ(st, t)− k(st, t)λ)dt+ σ(st, t)dwt + J ldN.

So, by Ito’s Lemma for Jump-Diffusion Processes, if dsqt is the risk-neutral

process differential, and f : R2 → R is some smooth function then

Et[f(st + dsqt , t+ dt)− f(st, t)] = (
∂f

∂t
+µ(st, t)

∂f

∂x
+σ(st, t)

2 ∂
2f

∂x2
+λEt[f(st+J

l)−f(st)])dt = rf(st, t)dt.

Rearranging, one arrives at the following PDE:

∂f

∂t
+ µ(st, t)

∂f

∂st
+ σ(st, t)

2∂
2f

∂s2
t

+ λEt[f(st + J l)− f(st)]− rf = 0. (3.4)

This generates the following Theorem:

Theorem 6 (Perrakis). Fix t < T , let st be represent the Jump-Diffusion
process 3.4.2, and let f : R2 → R be some smooth function, convex in
the first argument, such that f(sT , T ) = g(sT ) and there exists a ran-
dom variable D, measurable in dst, such that Et[Ddst] = 0,Et[D] = 1 −
rdt,Et[Df(st+dt, t+dt)] = f(st, t), and D is decreasing in dst. If f : R2 → R
solves (3.4) with boundary condition f(sT , T ) = g(sT ) then f(st, t) ≤
f(st, t).

3.4.3 An Integral Representation For a Particular Class

of Jump-Diffusion Processes

Consider the case where µ(st, t) = µst, k(st, t) = kst, σ(st, t) = σst, and
J = Jtst, where Jt is independent of st, homogeneous in t, and Jt and Js
are independent for all s 6= t. Then

ds = (µ− kλ)stdt+ σstdwt + JtstdN.

But observe that the log of this process is infinitely divisible. By [20], the
characteristic function ψ of the log-process at time t takes the form

ψt(u) = exp[t(i(µ− kλ)u− σ2

2
u2 +

∫ ∞
−∞

(e−iux − 1)M(dx))],
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where M is a Levy measure such that M(A) = λP[Jt ∈ A],∀A ∈ F .
Therefore the characteristic function of the lower bound risk-neutral process
is

ψqt (u) = exp[t(i(µ− kλ)u− σ2

2
u2 +

∫ ∞
−∞

(e−iux − 1)M q(dx))],

where M q = λ
Mχ·>j∗

M((j∗,∞))
, where j∗ is chosen so that

∫∞
−∞ xM

q(dx) = r−µ+

kλ. Therefore, by Carr and Madan[5], if ψq1 is analytic, the lower bound
price f q(K) of a call with strike price K is

f q(K) =
K−α

2π

∫ ∞
−∞

e−iu lnKψα(u)du,

where ψα(u) =
e−rT siu0 ψqT (u−(α+1)i)

α2+α−u2+i(2α+1)u
and α > 0 is arbitrary.

Now let

ψht (u) = exp[t(i(µ−kλ)u−σ
2

2
u2+

∫ ∞
−∞

(e−iux−1)M(dx))+
r − µ
m

t(e−ium−1)],

where m = inf{x ∈ R : M((−∞, x)) > 0}. Then, as before, if ψq1 is analytic
then the upper bound call price fh is given by

fh(K) =
K−β

2π

∫ ∞
−∞

e−iu lnKψβ(u)du,

where ψβ(u) =
e−rT siu0 ψhT (u−(β+1)i)

β2+β−u2+i(2β+1)u
and β > 0 is arbitrary. Now let pJ be the

density of Jt. Then an alternative expression for ψqt and ψht is

ψqt (u) = exp[t(i(µ− kλ)u− σ2

2
u2 + λ

∫ ∞
−∞

e−iuxpqJ(x)dx− λ)],

ψht (u) = exp[t(i(µ−kλ)u−σ
2

2
u2+λ

∫ ∞
−∞

e−iuxpJ(x)dx−λ)+
r − µ
m

t(e−ium−1)],

where pqJ =
pJχ·>j∗∫∞
j∗ pJ (x)dx

, where j∗ is chosen so that
∫∞
−∞ xp

q
J(x)dx = r −

µ + kλ =: rJ and m = inf{x ∈ R : pJ(x) > 0}. If ψJ represents the

49



characteristic function of pJ and if gα is some function such that

gα(x) := rJπ − rJeαx<
[∫ ∞
−∞

e−iuxψαJ (u)du

]
− ex

∫ ∞
−∞

e−iuxφJ(u)du,

where ψαJ = 1
iu−αψJ(u+ iα), φJ(u) = 1

1−iuψJ(u), and α 6= 0, then j∗ solves
gα(j∗) = 0 if ψJ is analytic.

3.5 Perrakis and Ryan’s Bounds

Perrakis and Ryan[32] was able to find second-order stochastic dominance
bounds on a call option in continuous probability space under the consumption-
based model with the additional assumption that the underlying security
has positive correlation with consumption, using the physical distribution
of the price change as an input. It states the following theorem:

Theorem 7. After a single revision period, if no second-order stochastic

dominance arbitrage opportunities exist, the price of a call option C(S,X, i)

with underlying price S, strike price X, and riskless interest rate i satisfies

max

(
0, S +

1

1 + i

[
−X +

∫ X

0

F (ω − S)dω

])
≤ C(S,X, i) ≤ S+

S

S + E[Y ]

[
−X +

∫ X

0

F (ω − S)dω

]
,

where Y is the change in price after one period and F is the CDF of Y.

Proof. Perrakis and Ryan constructs three portfolio, given an initial invest-
ment of S. The first portfolio (A) buys one share of the stock. The second
portfolio (B) buys a call at price C buys S − C riskless bonds. Finally,
the third portfolio (C) buys S/C calls. Observe that (A) pays out S + Y ,
(B) pays out h1(Y ) := (S − C)(1 + i) + (S + Y −X)+, and (C) pays out
h2(Y ) := S

C
(S + Y − X)+. Since all these portfolios cost the same, this

yields ∫ ∞
−S

(S + y)Z(y)dF (y) =

∫ ∞
−S

h1(y)Z(y)dF (y),

where Z is the pricing kernel. Subtracting from both sides, one obtains

∫ ∞
−S

[(S + y)− h1(y)]Z(y)dF (y) = 0.

Observe that, since (S + y) − h1(y) is increasing in y, there exists some
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constant y1 such that (S+ y1)−h1(y1) is 0, (S+ y)−h1(y) is non-negative
for all y > y1, and non-positive for all y < y1. Therefore, since the pricing
kernel Z is non-increasing and positive,

0 =

∫ ∞
−S

[(S + y)− h1(y)]Z(y)dF (y) ≤ Z(y1)

∫ ∞
−S

[(S + y)− h1(y)]dF (y),

which means
∫∞
−S[(S + y)− h1(y)]dF (y) ≥ 0. Rearranging terms,

S + E[Y ] ≥ (S − C)(1 + i) + E[(S + Y −X)+].

Solving for C gives the desired result. Similarly, for the upper bound:

∫ ∞
−S

(S + y)Z(y)dF (y) =

∫ ∞
−S

h2(y)Z(y)dF (y),

where Z is the pricing kernel. Subtracting from both sides yields

∫ ∞
−S

[(S + y)− h2(y)]Z(y)dF (y) = 0.

Observe that there exists some point, call it y2, such that (S+y2)−h2(y2) =
0, (S + y) − h2(y) is non-negative for all y < y2, and non-positive for all
y > y2. Therefore, since the pricing kernel Z is non-increasing and positive,

0 =

∫ ∞
−S

[(S + y)− h2(y)]Z(y)dF (y) ≥ Z(y2)

∫ ∞
−S

[(S + y)− h2(y)]dF (y),

which means
∫∞
−S[(S+y)−h2(y)]dF (y) ≤ 0. Rearranging terms, one arrives

at

S + E[Y ] ≤ S

C
E[(S + Y −X)+].

Solving for C gives the desired result.

Observe that these bounds are wider than Ritchken’s bounds. However,
the method used for this proof will provide a framework for deriving option
bounds under different models in chapter 5.
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Chapter 4

Option Bounds and Stochastic

Dominance: Deterministic

Volatility

This section discovers methods of implementation for Ritchken option bounds
in discrete time, as well as generalizing Ritchken bounds for the case of ran-
dom time.

4.1 Stochastic Dominance Option Bounds

4.1.1 Implementation of Continuous-Time No-Revision

Option Bounds with Fourier Transform

Let f(K) be the price of a call at strike price K with no revision opportu-
nities. Then

f(K) =

∫ ∞
0

(s−K)+D(s)ps(s)ds =

∫ ∞
−∞

(ex − ek)+D(ex)px(x)dx,

where x = ln s, where s is the log-price of the stock, k = lnK, ps is the PDF
of the stock price at expiry, px is the PDF of the log-stock price at expiry,
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D is the pricing kernel as a function of the stock price at expiry. Now,
the lower bound pricing kernel is given by D where D(s) = χs<s∗

rT P(ST<s∗)
=

χx<x∗
rT P(XT<x∗)

, where s∗ is chosen so that
∫∞

0
sD(s)ps(s)ds = S0, x∗ = ln s∗,

and XT = lnST . If ψ is the characteristic function of the log-stock price at
expiry, and f(K) is the lower bound call price at K, then

f(K) =

∫ ∞
−∞

(ex − ek)+D(ex)px(x)dx

=

∫ ∞
k

(ex − ek)D(ex)
1

2π

∫ ∞
−∞

e−iuxψ(u)dudx

=
1

2πrTP(XT < x∗)

∫ ∞
−∞

ψ(u)

∫ ∞
k

(ex(1−iu) − ek−iux)χx<x∗dxdu.

Now,

∫ ∞
k

(ex(1−iu) − ek−iux)χx<x∗dx =

∫ x∗

k

ex(1−iu)dx−
∫ x∗

k

ek−iuxdx

=
ex∗(1−iu) − ek(1−iu)

1− iu
− ek−iux∗ − ek(1−iu)

iu

=
ex∗(1−iu)

1− iu
− ek e

−iux∗

iu
− ek e

−iuk

1− iu
+ ek

e−iuk

iu

Furthermore, by the Gil-Palaez’s Fourier Inversion Theorem for CDFs [13],
we know that

P(XT < x∗) =
1

2
− 1

π
<
[∫ ∞

0

e−iux∗ψ(u)

iu
du

]
,

where <[z] is the real part of z for any z ∈ C. Finally, if φ is some ana-
lytic complex function such that lim

|<[z]|→∞
φ(z) = 0 then, from the Cauchy

Integration Theorem, for any α, b ∈ (0,∞),

∫ b

−b
φ(z)dz +

∫ b+iα

b

φ(z)dz +

∫ −b+αi
b+iα

φ(z)dz +

∫ −b
−b+iα

φ(z)dz = 0.

Taking the limit as b goes to ∞, we see that the second and fourth terms
vanish, since φ goes to 0 as the real part of its argument goes to∞ or −∞.
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Therefore, ∫ ∞
−∞

φ(z)dz =

∫ ∞+iα

−∞+iα

φ(z)dz.

If ψ is analytic, then φ(u) := (e−iux∗ − e−iuk)ψ(u)
iu

is analytic everywhere
except at 0 for all k. Moreover, since ψ is a characteristic function, it is
bounded, so lim

|<[z]|→∞
φ(z) = 0. Therefore,

∫ ∞
−∞

(e−iux∗ − e−iuk)ψ(u)

iu
du =

∫ ∞+iα

−∞+iα

(e−iux∗ − e−iuk)ψ(u)

iu
du

=eαx∗
∫ ∞
−∞

e−iux∗
ψ(u+ αi)

iu− α
du− eαk

∫ ∞
−∞

e−iuk
ψ(u+ αi)

iu− α
du.

Now let

fα(K) :=
c+Kcα −K(1+α)

∫∞
−∞ e

−iu lnKψα(u)du−
∫∞
−∞ e

−iu lnKφ(u)du

dα
,

where c =
∫∞
−∞

ex∗(1−iu)

1−iu ψ(u)du, cα =
∫∞
−∞

eαx∗−iux∗

iu−α ψ(u + iα)du, ψα(u) =

1
iu−αψ(u+iα), φ(u) = 1

1−iuψ(u), and dα = rTπ−rT eαx∗<
[∫∞
−∞

e−iux∗ψ(u+iα)
iu−α du

]
.

If ψ is analytic then f = fα for arbitrary α 6= 0. If ψ is not analytic then
by the Dominated Convergence Theorem, f = lim

α→0
fα.

Moreover, we have that

S0 =

∫ ∞
0

sD(s)ps(s)ds

=

∫ ∞
−∞

exD(ex)px(x)dx

=

∫∞
−∞

∫∞
−∞ e

xe−iuxχx<x∗dxψ(u)du

2πrTP(XT < x∗)
.

Taking the inner integral:

∫ ∞
−∞

exe−iuxχx<x∗dx =

∫ x∗

−∞
e(1−iu)xdx =

e(1−iu)x∗

1− iu
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Furthermore,

S02πrP(XT < x∗) = S0r
Tπ − S0r

T<
[∫ ∞
−∞

e−iux∗
ψ(u)

iu
du

]
.

Now let

gα(x) := S0r
Tπ − S0r

T eαx<
[∫ ∞
−∞

e−iuxψα(u)du

]
− ex

∫ ∞
−∞

e−iuxφ(u)du.

Now let g := lim
α→0+

gα. If ψ is analytic then gα = g for all α 6= 0. x∗ must

be chosen so that g(x∗) = 0.
When inf S = 0, the upper bound price f(K) at strike price K is given by

f(K) =
S0 − r−TSminT

E[ST ]− SminT

E[CT (ST )] +
r−TE[ST ]− S0

E[ST ]− SminT

(Smin −K)+,

where SminT = inf{x : P[ST ≥ x] > 0}. Thanks to the work of Carr and
Madan[5] and the fact that E[ST ] = ψ(−i), we have

f(K) =
K−α(S0 − r−TSminT )

2π(ψ(−i)− SminT )

∫ ∞
−∞

e−iu lnKψα(u)du+
r−Tψ(−i)− S0

ψ(−i)− SminT

(Smin−K)+,

where ψα(u) = ψ(u−(α+1)i)
α2+α−u2+i(2α+1)u

(not the complex conjugate) and α > 0 is

arbitrary. Figure (4.1) shows the result of using fft to find upper and lower
bounds are option prices. The script can be found in Appendix section
(8.2).

4.1.2 Option Bounds with and without Distributional

Assumptions

The option bounding method described in section 3.3.6 requires us to com-
pute a lattice with corresponding probabilities. In this paper, two methods
of constructing such a lattice will be discussed.

1. Quantile Method (see Figure 4.2): A lattice is constructed by
simply taking the quantiles of the data. This method has the ad-
vantage of being totally non-parametric, making no distributional
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Figure 4.1: Using the fft method in this section, Ritchken’s option bounds
are found for prices on calls with various strike prices with underly-
ing price 100, riskless rate 3%, and time to expiry one month. Top:
Continous-space option bounds when the log-price of the underlying is
distributed according to normal random variable with mean 4.705 and vari-
ance 0.01. Bottom: Continous-space option bounds when the log-price of
the underlying is distributed according to CGMY random variable with
C = .02, G = .03, Y = 1.7,M = .02,m = 4.705. These bounds are com-
pared with Merton’s bound: (S −Ke−rT )+
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Figure 4.2: Bounds on calls on the S&P500 of various strike prices when
underlying price is 2883.2, the annual riskless rate is 3.33%, and time to
maturity is 9 days. The quantile method for 6 nodes is used for lattice
estimation.

assumptions about the data whatsoever. However, this method can
fail to capture very fat tails when few quantiles are taken.

2. Moments-Matching Method (see Figure 4.3): The second method
chooses a lattice that matches the statistical moments of the under-
lying distribution. In particular, a lattice for a CGMY process is
chosen as the underlying distribution. The maximum entropy so-
lution with constraint that the first n moments match those of the
CGMY distribution, utilizing Rajan et al.’s[27] algorithm, are cho-
sen for generating the lattice. This method assumes all moments
are finite. However, this method also captures fat tails more effec-
tively than the quantile method, as it can match higher-order even
moments.

4.1.3 Option Bounds with Random Revision Times

We now consider bounding option prices when the revision times are ran-
dom. Let each period have a random but finite number of possible revision
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Figure 4.3: Left: Bounds for the price of a call on a theoretical stock
with underlying price of 10, strike price of 20, riskless rate of 3%, and 1
revision Opportunity. The lattice is chosen to match the first 5 moments of
a CGMY distribution with Y=0.8 with the C,G, and M parameters varying
so that variance remains constant as kurtosis increases. Right: Bounds for
the price of a call on a theoretical stock with underlying price of 10, strike
price of 20, riskless rate of 3%, and 1 revision Opportunity. The lattice is
chosen to match the first 5 moments of a geometric CGMY distribution
with Y=0.8, C=2, and G=2, with M varying so that skewness varies.
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opportunities τ ∈ {0, 1, ...,m}. The solution for the bounds can be derived
by the following argument: Let D be our pricing kernel. Then the current
price of our call C0 is given by C0 = r−1E[DC1], where C1 is the price of the
call in the next period. However, if our revision times are random, given by
τ , and Cτ is a subordinated process denoting the price of our call in the next
period then C0 = E[DCτ ] = E[E[DCτ |τ ]] =

∑m
j=1 E[DCj|τ = j]. This

holds for any D in the feasible region, including the D’s that produce the
bounds. So let U ∈ {u1, ..., un} denote the random geometric change in the
stock price after one revision. Let δi := P [τ = i], πi(k) := P [U = ui|τ = k],
let r denote the riskless discount factor and let S0 denote the current price
of the underlying. Then the upper bound C and lower bound C on a call
with strike price X is given by

C = r−1{
m∑
`=1

∑
{jµ}`

`!

j1!...jn!
pj1`,1...p

jh+1

`,h+1δ` max(0, uj1 ...ujnS0 −X)}, (4.1)

C = r−1{
m∑
`=1

∑
{jµ}`

`!

j1!...jn!
qj1`,1...q

jh+1

`,h+1δ` max(0, uj1 ...ujnS0 −X)}, (4.2)

where p1 = θ̂π1(`) + (1 − θ̂), pj = θ̂πi(`) for j = 2, ..., n, ` = 1, ...,m and

q`,h+1 = β̂, q`,j = (1 − β̂)
πj(`)∑h
i=1 πj(`)

for j = 1, ..., h, ` = 1, ...,m, where {jµ}`
is the collection of sets of non-negative integers such that

∑n
µ=1 jµ = ` for

(4.1) and
∑h+1

µ=1 jµ = ` for (4.2), where θ̂ = r−u1

E[U ]−u1
and β̂ = r−E[U |U<uh]

uh+1−E[U |U<uh]
,

where h = max{j : uj < r}.
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Figure 4.4: Left: Upper and lower bound call prices with varying revision
opportunities. Right: Upper and lower bounds values for Poisson dis-
tributed random revision time for varying values of the λ parameter. For
both graphs, the lattice was generated by a quantile method on a geomet-
ric CGMY process with C = 0.5, G = 2,M = 3.5, Y = 0.5 and drift 0.1.
The underlying price is 2883, the strike is 2600, the riskless rate is 3.33%,
and the time to expiry is 1. The MATLAB script for this can be found in
Appendix 8.1
.
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Chapter 5

Option Bounds and Stochastic

Dominance: Stochastic

Volatility

This chapter uses concepts of stochastic dominance to discover option
bounds in the context of continuous-time models with stochastic volatility.

5.1 Option Bounds on the Heston’s Stochas-

tic Volatility Model

For the sake of this bounding procedure, we make all the same assump-
tions as Perrakis and Ryan[32] with three additional assumptions: (i)
corr(ds, dv) ≤ 0, (ii) corr(dv, dc) ≤ 0, and (iii) corr(ds, dc) ≥ corr(dv, dc)corr(ds, dv).
Next, we will utilize the fact that, under the Heston model, a call option
always has a positive vega (partial derivative with respect to volatility) due
to the following lemma:

Lemma 3. Let s and v be stochastic processes whose movement is described
by (2.2) and (2.1), respectively, and let C(t, v(t), s(t)) be the price of a
European call at time t ∈ [0, T ] with underlying price s(t), volatility v(t),
and expiry date T . If no arbitrage opportunities exist then ∂C

∂v
≥ 0.

Proof. Let CBS(s(t), v(t), t) denote the Black-Scholes price of a call at time
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t with underlying price s(t) and implied volatility v(t). Let v denote the
volatility process described by 2.1 with initial volatility v(0) = v0 and,
for any δ ≥ 0, let sδ and vδ denote the same stock and volatility process,
receptively, with initial volatility v(0) = v0 + δ. Observe that if, for any t,
vδ(t) < v(t), then, by continuity of an Ito process, there exists t0 < t such
that v(t0) = vδ(t0). By the Markov property of v, this implies v(t) = vδ(t)
for all t ≥ t0 almost surely, which is a contradiction. Therefore vδ(t) ≥ v(t)
for all t almost surely. Now, if r is the instantaneous riskless rate, k is the
strike price, C(s(t), v(t), t) denotes the actual price of a call at time t with
underlying price s(t) and volatility v(t), and no arbitrage opportunities
exist then there exists an equivalent measure Q such that

C(s(0), v0 + δ, 0) =e−rTEQ[(sδ(T )− k)+]

=EQ[e−rTEQ[(sδ(T )− k)+|v]]

=EQ[CBS(s(0),
1

T

∫ T

0

vδ(s)ds, 0)]

≥EQ[CBS(s(0),
1

T

∫ T

0

v(s)ds, 0)]

=EQ[e−rTEQ[(s(T )− k)+|v]]

=e−rTEQ[(s(T )− k)+]

=C(s(0), v0, 0),

where the inequality holds because CBS is non-decreasing in implied volatil-
ity and 1

T

∫ T
0
vδ(s)ds ≥ 1

T

∫ T
0
v(s)ds because vδ(t) ≥ v(t) for all t ≥ 0 almost

surely.

Now consider a portfolio P1 where we sell a call C and buy ∂C
∂s

units of
the underlying. Then it follows from Ito’s lemma that

dP1 = m1dt+ ω1dz2(t), (5.1)

where

m1 = −∂C
∂t
− ∂C

∂v
κ(θ − v)− 1

2

∂2C

∂s2
vs2 − ∂2C

∂s∂v
ρσvs− 1

2

∂2C

∂v2
σ2v (5.2)
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and

ω1 = −∂C
∂v

σ
√
v (5.3)

Now, since ∂C
∂v
> 0, ω1 is negative and so, by assumption (ii), corr(dP1, dc) ≥

0. We therefore require m1 ≥ rP1 = r ∂C
∂s
s− rC, where the lower bound on

C is given in the equality case. Consequently, the lower bound on our call
solves the following PDE:

∂C

∂t
+
∂C

∂v
κ(θ − v) +

1

2

∂2C

∂s2
vs2 +

∂2C

∂s∂v
ρσ2vs+

1

2

∂2C

∂v2
σv + r

∂C

∂s
s− rC = 0

(5.4)
with boundary conditions

C(s(T ), v(T ), T ) =(s− k)+ (5.5)

C(0, v, t) =0 (5.6)

lim
s→∞

∂C

∂s
=1, (5.7)

where k is the strike price.
For the next part, we utilize the following decomposition:

dz1(t) = ρdz2(t) +
√

1− ρ2dz3(t), (5.8)

where dz3(t) is a Wiener process independent of dz1(t). As a result of as-
sumption (iii), corr(dz3, dc) ≥ 0. Now construct a portfolio P2 where we
buy one call and sell ∂C

∂s
+ σ

ρs
∂C
∂v

units of the underlying. Then, by Ito’s
lemma,

dP2 = m2dt+ ω2dz3(t) (5.9)

where

m2 =
∂C

∂t
+
∂C

∂v
κ(θ−v)+

1

2

∂2C

∂s2
+
∂2C

∂s∂v
ρσvs+

1

2

∂2C

∂v2
σ2v− ∂C

∂v

µσ

ρ
(5.10)

and

ω2 = −∂C
∂v

√
1− ρ2

ρ
σ
√
v. (5.11)

ω2 > 0, so corr(dP2, dc) ≥ 0, and so we have the inequality m2 ≥ rP2 =
rC − r ∂C

∂s
s − rσ

ρ
∂C
∂v
, where the upper bound on C is given in the equality
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case. Therefore, the upper bound for C solves the following PDE:

∂C

∂t
+
∂C

∂v
κ(θ̂−v)+

1

2

∂2C

∂s2
+
∂2C

∂s∂v
ρσvs+

1

2

∂2C

∂v2
σ2v+r

∂C

∂s
s−rC = 0, (5.12)

where θ̂ = θ − (µ−r)σ
κρ

, with boundary conditions

C(s(T ), v(T ), T ) =(s− k)+ (5.13)

C(0, v, t) =0 (5.14)

lim
s→∞

∂C

∂s
=1, (5.15)

where k is the strike price. Observe that the lower upper bounds equation
only differs from the upper bounds equation by a change of parameter
for θ. Now, let H(s(t), v(t), t;κ, θ, ρ, σ, k, T, r, λ) denote the Heston price
at time t, where κ denotes the reversion speed, θ denotes the long-term
mean, ρ denotes the correlation between the volatility and stock price, σ2

denotes the instantaneous volatility of the volatility, k is the strike price, T
is the time to maturity, r is the riskless rate, and λ represents the relative
risk-aversion of the marginal investor. Observe that the upper and lower
bounds PDEs are simply Heston’s PDE with λ = 0. Therefore, the lower
bound price is

H(s(t), v(t), t;κ, θ, ρ, σ, k, T, r, 0)

and the upper bound price is

H(s(t), v(t), t;κ, θ − (µ− r)ρσ
κ

, ρ, σ, k, T, r, 0).

Under the Heston price, the risk-neutral dynamics of the stock is described
by

ds = rdt+
√
vdz1,

dv = κλ(θλ − v)dt+ σ
√
vdz2,

dz1dz2 = ρdt,

where θλ = κθ
κ+λ

, κλ = κ+ λ. In this paper, the upper bounds (ds, dv) and
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lower bound (ds, dv) price dynamics are given by

ds = rdt+
√
vdz1,

dv = κ(θµ − v)dt+ σ
√
vdz2,

ds = rdt+
√
vdz1,

dv = κ(θ − v)dt+ σ
√
vdz2,

dz1dz2 = ρdt,

where θµ = θ − (µ−r)σ
κρ

.

5.2 Sharpness of Bounds

We wish to show that the bounds given are sharp by showing that they
are valid option prices given the assumptions. If corr(dc, dv) = 0 then
the assumptions are not violated and P1 has no correlation with the mar-
ket. Therefore, E[dP1] = m1dt = rP1dt and the lower bound follows. Al-
ternatively, if corr(dc, dv) = corr(dc, ds)corr(ds, dv) then the assumptions
are not violated and P2 has no correlation with the market. Therefore,
E[dP2] = m2dt = rP2dt and the upper bound follows.

5.3 Example

In this section, parameters are estimated by MLE, using Ford stock data.
Then call price bounds and corresponding implied volatility bounds are
found, given the estimated parameters. The following parameters are ob-
tained: µ = 0.1044, θ = 0.1205, κ = 3.798, σ = 0.3161, ρ = −0.0971. Figure
5.1 displays the call price bounds and implied volatility bounds.
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Figure 5.1: Option bounds on a Ford stock with spot price $8.9, riskless
rate 4%, and 1 year to expiry. Parameters are estimated via MLE.
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5.4 Generalized Stochastic Volatility Option

Bounds

This section will generalize the results from the previous section. Assume
the stock s(t) and volatility v(t) at time t have the following differentials:

ds(t) = µ(s)dt+ σ(s)
√
vdz1(t) (5.16)

dv(t) = α(v)dt+ β(v)dz2(t), (5.17)

where z1, z2 are Wiener processes and β(v) ≥ 0 for all v and σ(s) > 0 for
all s. Furthermore, let c(t) represent consumption at time t, let z3 and
z4 be processes such that dz3 := dc − E[dc], and dz4 = dz1−ρ12dz2√

1−ρ2
12

. Note

that z3 need not be a Wiener process and note that z4 is a Wiener process
independent of s. Now let ρij =

cov(dzi,dzj)

dt
for i, j = 1, 2, 3, 4. Then any

function of s, v, and t – call it f – will, by Ito’s Lemma, have the following
differential:

df(t, s, v) =(
∂f

∂t
+
∂f

∂s
µ(s) +

∂f

∂v
α(v) +

1

2

∂2f

∂s2
σ(s)2v +

1

2

∂2f

∂v2
β(v)2 +

∂2f

∂v∂s
ρ12σ(s)

√
vβ(v))dt

+
∂f

∂s
σ(s)
√
vdz1(t) +

∂f

∂v
β(v)dz2(t).

Now, with some loss of generality, assume the following: (i) ρ12 ≤ 0, (ii)
ρ23 ≤ 0, and (iii) ρ13 ≥ ρ23ρ12. Observe that we do not require the market
correlations to be constant. We only require them to satisfy some very
fundamental and intuitive inequalities. Furthermore, assume f(T, ·, v(T ))
is convex for some T > t so that ∂f

∂v
is non-negative. Then if we assemble a

portfolio p1 in which we buy a unit of f and hedge it with ∂f
∂s

units of the
stock then the differential of the portfolio will be

dp1 =df − ∂f

∂s
ds

=(
∂f

∂t
+
∂f

∂v
α(v) +

1

2

∂2f

∂s2
σ(s)2v +

1

2

∂2f

∂v2
β(v)2 +

∂2f

∂v∂s
ρ12σ(s)

√
vβ(v))dt

+
∂f

∂v
β(v)dz2(t).

Since ρ23 ≤ 0, this portfolio must have an expected return that is below the
riskless rate. Consequently, a lower bound on f must satisfy the following
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PDE:

∂f

∂t
+
∂f

∂v
α(v)+

1

2

∂2f

∂s2
σ(s)2v+

1

2

∂2f

∂v2
β(v)2+

∂2f

∂v∂s
ρ12σ(s)

√
vβ(v)−rf+r

∂f

∂s
s = 0.

Alternatively, construct a new portfolio p2 by buying one unit of f and
selling ∂f

∂s
+ ∂f

∂v
β(v)

σ(s)ρ12
√
v

units of the stock. Then

dp2 =df − ∂f

∂s
ds− ∂f

∂v

β(v)

σ(s)ρ12

√
v
ds

=(
∂f

∂t
+
∂f

∂v
(α(v)− β(v)µ(s)

σ(s)ρ12

√
v

) +
1

2

∂2f

∂s2
σ(s)2v +

1

2

∂2f

∂v2
β(v)2 +

∂2f

∂v∂s
ρ12σ(s)

√
vβ(v))dt

− ∂f

∂v
β(v)

√
1− ρ2

12

ρ12

dz4(t).

Since ρ13 ≥ ρ23ρ12, we have that ρ34 ≥ 0 and so dp2 must have an expected

return below the riskless rate and so the upper bound on f must satisfy:

∂f

∂t
+
∂f

∂v
(α(v)−β(v)(µ(s)− rs)

σ(s)ρ12
√
v

)+
1

2

∂2f

∂s2
σ(s)2v+

1

2

∂2f

∂v2
β(v)2+

∂2f

∂v∂s
ρ12σ(s)

√
vβ(v)−rf+r

∂f

∂s
s = 0.

The risk neutral processes for the upper bound price (s∗, v∗) and lower
bound price (s∗, v∗) are

ds∗ = rsdt+ σ(s)
√
vdz1

dv∗ = α(v)dt+ β(v)dz2

ds∗ = rsdt+ σ(s)
√
vdz1

dv∗ =

(
α(v)− β(v)(µ(s)− rs)

σ(s)ρ12

√
v

)
dt+ β(v)dz2.

5.4.1 Example: The 3/2 model

In the case of the 3/2 model, we have µ(s) = µs, σ(s) = s, α(v) = κ(θv −
v2), β(v) = ηv3/2, ρ12 = ρ, s(0) = s0, v(0) = v0. The risk neutral dynamic
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Figure 5.2: Call price and implied volatility bounds for s = 100, v = 0.1, t =
1, θ = 0.2, κ = 0.3, σ = 1, ρ = −0.3, r = 0.04, µ = 0.1

71



for the upper (s∗, v∗) and lower (s∗, v∗) bounds are given by:

ds∗ = rsdt+ s
√
vdz1

dv∗ = κ(θv − v2)dt+ ηv3/2dz2

ds∗ = rsdt+ sdz1

dv∗ = κ((θ − η(µ− r)
ρ12κ

)v − v2)dt+ ηv3/2dz2.

Therefore, the upper φ∗ and lower φ∗ bound characteristic functions at time
T are given by

φ∗(u) =
Γ(γ − α)

Γ(γ)

[
2κθ̂

η2v0(eκθ̂T − 1)

]α
M

(
α, γ,− 2κθ̂

η2v0(eκθ̂T − 1)

)
s0e

rT ,

φ∗(u) =
Γ(γ − α)

Γ(γ)

[
2κθ

η2v0(eκθT − 1)

]α
M

(
α, γ,− 2κθ

η2v0(eκθT − 1)

)
s0e

rT ,

α = −(
1

2
− p

η2
) +

√
(
1

2
− p

η2
)2 +

2q

η2
,

γ = 2(α + 1− p2

η
),

p = −κ+ iηρu,

iu

2
+
u2

2
,

θ̂ = θ − η(µ− r)
ρκ

where Γ is the gamma function and M is the confluent hypergeometric
function. So if our goal is to find the price of a vanilla European call
option then we simply utilize the formula from Carr and Madan (1999) to
obtain upper f ∗(k) and lower f∗(k) bound call prices at strike price k and
time to expiry T :

f ∗(k) =
e−rT

π

∫ ∞
0

k−iuk−β
φ∗(u)

β2 + β − u2 + i(2β + 1)u
du,
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f∗(k) =
e−rT

π

∫ ∞
0

k−iuk−β
φ∗(u)

β2 + β − u2 + i(2β + 1)u
du,

where β > 0 is some free parameter that can be chosen arbitrarily (though,
in practice, not every choice of β will be numerically stable) since the
underlying process has finite moments.
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Chapter 6

The CRRA Model

This chapter discovers an efficient method for computing option prices un-
der the CRRA model. Various numerical examples under different physi-
cal processes demonstrate that a broad range of option price and implied
volatility curves are possible under the CRRA model.

6.1 FFT Option Pricing with the CRRA Model

Theorem 8. Under the CRRA model, if C(k) is the price of a call on an
index with strike price k, S0 is the current price of the underlying, T is
the time to expiry, ST is the price of the underlying at expiration, r is the
continuously compounding interest rate, and ψ is the characteristic function
of ln ST

S0
then, if for some b > 0, ψ(u) is analytical on 0 < =[u] < b, then

C(k) =
1

2πψ((γ − 1)i)

∫ ∞
−∞

k−ωi−α
S1+α+ωi

0 ψ((γ − ωi− α− 1)i)

α2 + α− ω2 + (2α + 1)ωi
dω,

where γ is chosen so that ψ((γ−1)i)
ψ(γi)

= erT and α ∈ (0, b).

Proof. Let φ1 denote the Mellin Transform of C, let q denote the risk-
neutral density, and let φ2 denote the Mellin Transform of the physical
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density f . Then

φ1(u) =

∫ ∞
0

ku−1C(k)dk

=

∫ ∞
0

ku−1

∫ ∞
0

e−rT (s− k)+q(s)dsdk

=

∫ ∞
0

ku−1

∫ ∞
k

e−rT (s− k)q(s)dsdk

=

∫ ∞
0

e−rT q(s)

∫ s

0

ku−1(s− k)dkds

=


∫∞

0
e−rT su+1

u2+u
q(s)ds, u 6= 0

∞, u = 0

.

Now, under the CRRA model, q(x) = x−γf(x)∫∞
0 y−γf(y)dy

= x−γf(x)
φ2(1−γ)

, and so, for

u 6= 0,

φ1(u) =

∫ ∞
0

e−rT
su+1

u2 + u
q(s)ds =

e−rT

(u2 + u)φ2(1− γ)

∫ ∞
0

su−γ+1f(s)ds =
e−rTφ2(2− γ + u)

(u2 + u)φ2(1− γ)
.

Now, let ψ be the characteristic function of ln ST
S0
. If g is the physical density

of ln ST
S0

then

g(x) = d
dx
P[ln ST

S0
< x] = d

dx
P[ST < S0e

x] = S0e
xf(S0e

x), and so

φ2(u) =

∫ ∞
0

xu−1f(x)dx

=

∫ ∞
−∞

(S0e
y)uf(S0e

y)dy

=Su−1
0

∫ ∞
−∞

ey(u−1)g(y)dy

=Su−1
0 ψ(−i(u− 1)).

So

φ1(u) =
e−rTφ2(2− γ + u)

(u2 + u)φ2(1− γ)
=
e−rTSu+1

0 ψ((γ − u− 1)i)

(u2 + u)ψ(γi)
.
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Now, observe that γ must be chosen so that

S0 = e−rT
∫ ∞

0

sq(s)ds =
e−rT

∫∞
0
s1−γf(s)ds

φ2(1− γ)
= e−rT

φ2(2− γ)

φ2(1− γ)
= e−rTS0

ψ((γ − 1)i)

ψ(γi)
,

and so ψ((γ−1)i)
ψ(γi)

= erT . Finally, by the Mellin Inversion Theorem if
Su+1

0 ψ((γ−u−1)i)

u2+u

is analytic on the strip 0 < =[u] < b for some b > 0,

C(k) =
−ie−rT

2πψ(γi)

∫ α+i∞

α−i∞
k−u

Su+1
0 ψ((γ − u− 1)i)

u2 + u
du

=
1

2πψ((γ − 1)i)

∫ ∞
−∞

k−ωi−α
Sωi+α+1

0 ψ((γ − ωi− α− 1)i)

α2 + α− ω2 + (2α + 1)ωi
dω,

where α ∈ (0, b), since
Su+1

0 ψ((γ−u−1)i)

u2+u
is analytic on the strip 0 < <[u] < b

if ψ is analytic on 0 < =[u] < b.

We can use the theorem above to design an algorithm that quickly
evaluates the price of a call on an index under the CRRA model. The
Fast Fourier Transform (FFT) algorithm uses Discrete Fourier Transform
(DFT) so that if we have a truncated discretized characteristic function on
[−M,M ] with n discretized points then the algorithm will out the DFT on

[0, (n−1)π
M

]. Therefore, in order to use FFT to obtain the price of a call with
strike price k, we must choose n = Mk

π
+ 1. Now choose φ so that

φ(ω) =
S1+α+ωi

0 ψ((γ − ωi− α− 1)i)

ψ((γ − 1)i)(α2 + α− ω2 + (2α + 1)ωi)
.

Taking the Fourier Transform of φ will give Ĉ, where Ĉ(k) = eαkC(ek). So
the call price C(k) at strike price k is given by k−αĈ(ln k). FFT will allow
us to compute Ĉ efficiently.

6.2 Numerical Experiment with Levy Pro-

cesses

This section considers the CRRA prices for three different Levy processes,
using the algorithm described in the previous section:

1. A CGMY process with C = 0.07, G = 10,M = .1, Y = 1.1,m = 0.2.
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2. A Normal distribution with mean 1 and variance 0.1 In this case, the
CRRA price is the Black-Scholes price.

3. A Variance Gamma distribution with location parameter 0.2, stability
parameter 5, asymmetry parameter 3, and scaling parameter 0.2.

The result can be seen in figure (6.1). Theoretically, the computational
time of the algorithm should be of the same order as fast fourier transform:
Assuming one uses the algorithm to find the price of a call at n different
strike prices, where n is a power of 2, then the computation time should be
O(n log2 n). The script for the algorithm this can be found in the Appendix
section (8.3).
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Figure 6.1: Left: The CRRA prices on a stock with underlying price 10,
time to expiry 10, and interest rate 4%. Right: The corresponding implied
volatilies for each process over various strike price. The CGMY and Normal
implied volatilities shoot up near K = 0 due to numerical error from the
numerical implied volatility algorithm. Observe that the implied volatility
for Normal is constant.
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Chapter 7

Concluding Remarks and

Further Research

In summary, this thesis derives efficient methods for computing pricing
bounds, as well as particular prices, on vanilla calls. This paper also derives
bounds on call prices when the underlying asset is driven by a stochastic
volatility process.

The original research done in this thesis can be greatly expanded. The orig-
inal contributions in this thesis with regard to option bounds on stochastic
volatility models can likely be expanded to more general stochastic volatil-
ity models than those discussed in this thesis. Moreover, risk-neutral pro-
cesses corresponding to bounds on general Levy processes (which are more
general than Jump-Diffusion processes) may be found. Computationally
efficient methods can be found for models of utility beyond CRRA utility,
including quadratic utility and exponential utility.

81



82



Chapter 8

Appendix

8.1 Ritchken Bounds on Discrete and Sub-

ordinated Time with Multiple Revisions

Script for Method of Moments estimator was borrowed from Rajan et

al.[27]. The following is my MATLAB script for quantile estimator and

bounding procedure:

C=.5;G=2;M=3.5;Y=.5;T=100;mu=.1;

p s i=@(u ,C,G,M,Y,mu)gamma(−Y) . ∗C. ∗ ( (M−1 i .∗u ) . ˆY−M. ˆY+1 i ∗Y∗Mˆ(Y−1).∗u ) + . . .

gamma(−Y)∗C∗ ( (G+1 i .∗u ) . ˆY−G. ˆY−1 i .∗Y.∗G. ˆ (Y−1).∗u ) ;

phi=@( t , u ,C,G,M,Y,mu) exp ( t .∗ p s i (u ,C,G,M,Y) ) . ∗ exp (1 i ∗mu.∗u ) ;

[ cgmy pdf , uu]= pdf f romcf (@(u) phi (1 , u ,C,G,M,Y,mu) ) ;

cgmy cdf=cumsum( cgmy pdf ( 1 : end−1).∗ d i f f (uu ) ) ;

uuind=ze ro s (n , 1 ) ;

f o r j =1:n

uind=f i n d ( cgmy cdf>j /n ) ;

uuind ( j )=uind ( 1 ) ;

end

uu=[uu( uuind ) ; 1 / n∗ ones (1 , n ) ] ;

p=1/n∗ ones (1 , n ) ;

u=q u a n t i l e ( sp , [ cumsum(p ( 1 : end−1)) 1 ] ) ;

u=[u ; p ] ;

x=2600;

s0 =2883.2;
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l o=ze ro s ( 1 0 , 1 ) ; up=ze ro s ( 1 0 , 1 ) ; rn=ze ro s ( 1 0 , 1 ) ;

l l o=ze ro s ( 1 0 , 1 ) ; uup=ze ro s ( 1 0 , 1 ) ; r rn=ze ro s ( 1 0 , 1 ) ; bs=ze ro s ( 1 0 , 1 ) ;

r =1.03333;

bsup=(r−exp(− s q r t (uu ( 1 , : ) . ˆ 2 ∗ uu (2 , : ) ’ −uu ( 1 , : ) ∗ uu ( 2 , : ) ’ ) ) ) . . . .

/( exp ( s q r t (uu ( 1 , : ) . ˆ 2 ∗ uu (2 , : ) ’ −uu ( 1 , : ) ∗ uu ( 2 , : ) ’ ) ) . . .

−exp(− s q r t (uu ( 1 , : ) . ˆ 2 ∗ uu (2 , : ) ’ −uu ( 1 , : ) ∗ uu ( 2 , : ) ’ ) ) ) ;

bsdp=1−bsup ;

bsu=exp ( s q r t (uu ( 1 , : ) . ˆ 2 ∗ uu (2 , : ) ’ −uu ( 1 , : ) ∗ uu ( 2 , : ) ’ ) ) ; bsd =1./ bsu ;

l l l =10;

f o r j =1: l l l

[ l l o ( j ) , uup ( j )]=mppbound( s0 , j , x , r , exp (uu ( 1 , : ) ) , uu ( 2 , : ) ) ;

bs ( j )=binPriceCRR (x , s0 , r , . . .

s q r t (uu ( 1 , : ) . ˆ 2 ∗ uu (2 , : ) ’ − ( uu ( 1 , : ) ∗ uu ( 2 , : ) ’ ) . ˆ 2 ) , 1 / j , j , ’CALL’ , 0 ) ;

end

% 0 r e v i s i o n o p p o r t u n i t i e s

l l o =[s0−x∗( s0−x>0); l l o ] ;

uup=[s0−x∗( s0−x>0); uup ] ;

%Poisson Subordinator

lambda = [ 1 : . 1 : 7 ] ;mm=length ( lambda ) ;

upsub=ze ro s (mm, 1 ) ; losub=ze ro s (mm, 1 ) ;

f o r j =1:mm

sub=makedist ( ’ Poisson ’ , lambda ( j ) ) ;

prs=pdf ( sub , [ 0 : l l l ] ) ;

upsub ( j )=prs ∗uup ;

losub ( j )=prs ∗ l l o ;

end

f i g u r e (6 )

p l o t ( 0 : l l l , l l o )

hold on

p lo t ( 0 : l l l , uup )

% hold on

% p lo t ( 1 : 1 0 , bs )

x l a b e l ( ’ r e v i s i o n oppor tun i t i e s ’ )

y l a b e l ( ’ cur r ent pr i ce ’ )

l egend ( ’ lower ’ , ’ upper ’ , ’ b l a ck s cho l e s ’ )

hold o f f

f i g u r e (7 )

p l o t ( lambda , losub , lambda , upsub ) ;

l egend ( ’ lower ’ , ’ upper ’ )

x l a b e l ( ’\ lambda ’ )
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y l a b e l ( ’ Pr ice ’ )

f unc t i on [ loback , upback , r n p r i c e ]=mppbound( s0 , k , x , r , u , p )

r=r ˆ(1/k ) ;

u=u .ˆ (1 / k ) ;

i f narg in == 5

i f k==1

[ loback , upback]=opobound ( s0 , x , r , u ) ;

e l s e

h=f i n d (u<r , 1 , ’ l a s t ’ ) ;

alpha = ( r−u(h ) ) / ( u(h+1)−u(h ) ) ; theta=(r−u ( 1 ) ) / ( u( end)−u ( 1 ) ) ;

cu=f a c t o r i a l ( k ) . / ( f a c t o r i a l (k− [0 : k ] ) . ∗ f a c t o r i a l ( [ 0 : k ] ) ) . . .

.∗ theta . ˆ [ 0 : k ] .∗(1− theta ) . ˆ ( k− [0 : k ] ) . ∗ . . .

max(0 , u( end ) . ˆ [ 0 : k ] . ∗ u ( 1 ) . ˆ ( k− [0 : k ] ) . ∗ s0−x ) ;

c l=f a c t o r i a l ( k ) . / ( f a c t o r i a l (k− [0 : k ] ) . ∗ f a c t o r i a l ( [ 0 : k ] ) ) . . .

.∗ alpha . ˆ [ 0 : k ] .∗(1− alpha ) . ˆ ( k− [0 : k ] ) . ∗ . . .

max(0 , u(h + 1 ) . ˆ [ 0 : k ] . ∗ u(h ) . ˆ ( k− [0 : k ] ) ∗ s0−x ) ;

upback = rˆ(−k )∗sum( cu , 2 ) ’ ;

loback = rˆ(−k )∗sum( c l , 2 ) ’ ;

end

e l s e

i f k==1

[ loback , upback]=opobound ( s0 , x , r , u , p ) ;

e l s e

n=k ;

u=u(p˜=0);

p=p(p˜=0);

[ u , I ]= s o r t (u ) ;

p=p( I ) ;

m=length (p ) ;

uhat=cumsum(u .∗p ) . / cumsum(p ) ;

uha t s t r i ng=nmult ichoosek ( uhat , n ) ;

u s t r i n g=nmult ichoosek (u , n ) ;

uu=prod ( us t r ing , 2 ) ;

h=f i n d ( uhat<r , 1 , ’ l a s t ’ ) ;

a lha t =(r−uhat (h ) ) / ( uhat (h+1)−uhat (h ) ) ;

thhat = ( r−uhat ( 1 ) ) / ( uhat ( end)−uhat ( 1 ) ) ;

cub=ze ro s ( nchoosek (m+n−2,n−1) , l ength ( x ) ) ;

c lb=ze ro s ( nchoosek (m+n−2,n−1) , l ength ( x ) ) ;
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crn=ze ro s ( nchoosek (m+n−2,n−1) , l ength ( x ) ) ;

c f=max(0 , uu .∗ s0−x ’ ) ;

uback=nmult ichoosek ( uhat , n−1);

%back propagate

f o r k=1: nchoosek (m+n−2,n−1)

ind=i n d l a t ( uback (k , : ) , uhat ’ , uha t s t r i ng ) ;

c f i n=s o r t ( c f ( ind , : ) , 1 ) ;

chat=cumsum( c f i n .∗p ’ , 1 ) . / cumsum(p ’ ) ;

cub (k , : )= r ˆ(−1).∗( thhat .∗ chat ( end ,:)+(1− thhat ) . ∗ chat ( 1 , : ) ) ;

c lb (k , : )= r ˆ(−1).∗( a lhat .∗ chat (h+1,:)+(1− a lhat ) . ∗ chat (h , : ) ) ;

crn (k , : )= r ˆ(−1)∗ chat ( end , : ) ;

end

f o r j=n−1:−1:2

c l=ze ro s ( nchoosek (m+j −2, j −1) , l ength ( x ) ) ;

cu=ze ro s ( nchoosek (m+j −2, j −1) , l ength ( x ) ) ;

c r=ze ro s ( nchoosek (m+j −2, j −1) , l ength ( x ) ) ;

j

ub=nmult ichoosek ( uhat , j −1);

f o r i =1: nchoosek (m+j −2, j−1)

ind=i n d l a t (ub( i , : ) , uhat ’ , uback ) ;

cubb=s o r t ( cub ( ind , : ) , 1 ) ;

c lbb=s o r t ( c lb ( ind , : ) , 1 ) ;

crnn=s o r t ( crn ( ind , : ) , 1 ) ;

cuhat=cumsum( cubb .∗p ’ , 1 ) . / cumsum(p ’ ) ;

c l h a t=cumsum( clbb .∗p ’ , 1 ) . / cumsum(p ’ ) ;

cu ( i , : )= r ˆ(−1).∗( thhat .∗ cuhat ( end ,:)+(1− thhat ) . ∗ cuhat ( 1 , : ) ) ;

c l ( i , : )= r ˆ(−1).∗( a lhat .∗ c l h a t (h+1,:)+(1− a lhat ) . ∗ c l h a t (h , : ) ) ;

c r ( i , : )= r ˆ(−1)∗p∗ crnn ;

end

c lb=c l ;

cub=cu ;

crn=cr ;

uback=ub ;

end

cuhat=cumsum( cub .∗p ’ , 1 ) . / cumsum(p ’ ) ;

c l h a t=cumsum( c lb .∗p ’ , 1 ) . / cumsum(p ’ ) ;

upback=r ˆ(−1).∗( thhat .∗ cuhat ( end ,:)+(1− thhat ) . ∗ cuhat ( 1 , : ) ) ;

loback=r ˆ(−1).∗( a lhat .∗ c l h a t (h+1,:)+(1− a lhat ) . ∗ c l h a t (h , : ) ) ;

r n p r i c e=r ˆ(−1)∗p∗ crn ;

end
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end

end

func t i on combs = nmult ichoosek ( values , k )

%// Return number o f mu l t i subse t s or ac tua l mu l t i subse t s .

i f numel ( va lue s)==1

n = va lues ;

combs = nchoosek (n+k−1,k ) ;

e l s e

n = numel ( va lue s ) ;

combs = bsxfun (@minus , nchoosek ( 1 : n+k−1,k ) , 0 : k−1);

combs = reshape ( va lue s ( combs ) , [ ] , k ) ;

end

end

func t i on h=i n d l a t ( uback , u , u s t r i n g )

uback=[repmat ( uback , l ength (u ) , 1 ) u ] ;

h=ismember ( s o r t ( us t r ing , 2 ) , s o r t ( uback , 2 ) , ’ rows ’ ) ;

end

func t i on [ f , u]= pdf f romcf ( c )

[ f , u]= f a s t f t ( c , 1 0 , 1 0 0 0 ) ;

end

func t i on [ fhat , u]= f a s t f t ( f ,M,N)

dx=2∗M/N;

x=[−M: dx :M] ;

fd=f ( x ) ;

fha t=M/( pi ∗N)∗ ( f f t s h i f t ( f f t ( i f f t s h i f t ( fd ) ) ) ) ;

du=pi /M;

u=−N/2∗ pi /M+[0:N−1]∗du ;

fhat=fhat ( abs (u)<N) ;

u=u( abs (u)<N) ;

end

8.2 Ritchken Bounds with FFT

K=200; s =100; r =.03; T=1/12; % s e t s t r i k e
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C=.02;G=.03;Y=1.7;M=.02;

mu=( log ( s ) + . 1 ) ; sigma =.1;

p s i 1=@(u) exp (mu.∗u .∗1 i−sigma . ˆ 2 . / 2 . ∗ u . ˆ 2 ) ; % t e s t c f

p s i 2=@(u) cgmy cf (u ,C,G,M,Y) . ∗ exp (1 i .∗u .∗mu) ;

[ yu , yl , ku , k l ]= r b f f t ( ps i2 ,K, s , r ,T) ;

merton=s−exp(−r ∗T)∗ k l ;

merton=merton . ∗ ( merton>0);

f i g u r e (1 )

p l o t (ku , yu )

hold on

p lo t ( kl , y l )

p l o t ( kl , merton )

legend ( ’ upper bound ’ , ’ lower bound ’ , ’ Merton bound ’ )

t i t l e ( ’CGMY Bounds ’ )

x l a b e l ( ’ S t r i k e Price ’ )

y l a b e l ( ’ Ca l l Pr ice ’ )

hold o f f

[ yu , yl , ku , k l ]= r b f f t ( ps i1 ,K, s , r ,T) ;

merton=s−exp(−r ∗T)∗ k l ;

merton=merton . ∗ ( merton>0);

f i g u r e (2 )

p l o t (ku , yu )

hold on

p lo t ( kl , y l )

hold on

p lo t ( kl , merton )

x l a b e l ( ’ S t r i k e Price ’ )

y l a b e l ( ’ Ca l l Pr ice ’ )

l egend ( ’ upper bound ’ , ’ lower bound ’ , ’ Merton bound ’ )

t i t l e ( ’ Gaussian Bounds ’ )

hold o f f

f unc t i on [ yu , yl , uu , u l ]= r b f f t ( ps i ,K, s , r ,T)

%% lower bound

r=exp ( r ∗T) ;

N=5000;

M=500;

alpha=1e−5 i ;

x=log ( s ) ;

k=log (K) ;
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phi=@(u) p s i (u ) . / ( 1 i .∗u ) ;

[ z1 , x1]= f a s t f t (@(u) phi (u+alpha .∗1 i ) ,M,N) ;

z1=(exp ( alpha .∗ x1 ) . ∗ z1 )∗2∗ pi ;

phi=@(u) p s i (u)./(1−1 i .∗u ) ;

[ z2 , x2]= f a s t f t (@(u) phi (u ) ,M,N) ;

z2=2∗pi ∗ z2 .∗ exp ( x2 ) ;

d=r ∗pi−r ∗ r e a l ( z1 ) ;

g=(d∗ s−r e a l ( z2 ) ) ;

xind=f i n d ( abs ( g)==min ( abs ( g ( x1>x+log ( r ) ) ) ) ) ;

xind=xind ( end ) ;

xs=x1 ( xind ) ;

c2=r e a l ( z2 ( xind ) ) ;

c1=r e a l ( z1 ( xind ) ) ;

kind=f i n d ( ( x1<=k ) ) ;

p1=r e a l ( z1 ( kind ) ) ;

p2=r e a l ( z2 ( kind ) ) ;

K=exp ( x1 ( kind ) ) ;

y l =(c2+(K) . ∗ c1−(K) . ∗ p1−p2 ) . / d( xind ) . ∗ (K<exp ( xs ) ) ;

u l=K;

%% upper bound

N=10000;

M=100;

alpha=3e−2;

phi=@(u) p s i (u−(alpha +1)∗1 i ) . / ( alpha .ˆ2+ alpha−u.ˆ2+1 i . ∗ ( 2 . ∗ alpha +1).∗u ) ;

[ yu , xu]= f a s t f t ( phi ,M,N) ;

yu=exp(−alpha .∗ xu ) . ∗ yu ;

kind=(xu<=k ) ;

Ku=exp ( xu ( kind ) ) ;

yu=r e a l ( yu ( kind ) ) ;

yu=s ∗yu . / p s i (−1 i ) ;

uu=Ku;

end

8.3 CRRA Price with FFT

[ y1 , k1]= f a s t p r i c e (@(u) exp (2 i .∗u ) . ∗ cgmy cf (u , . 5 , 3 , 5 , 1 . 7 ) , 1 0 , 2 0 , . 0 4 , 1 0 , 1 0 0 ) ;

[ y2 , k2]= f a s t p r i c e (@( x ) exp ( x . ∗ . 1 i−x . ˆ 2 . / 2 0 ) , 1 0 , 2 0 , . 0 4 , 10 , 100 ) ;

[ y3 , k3]= f a s t p r i c e (@(u) variance gamma cf (u , . 5 , . 1 , 2 , 2 ) , 10 , 20 , . 04 , 10 , 100 ) ;

p l o t ( k1 , y1 )
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hold on

p lo t ( k2 , y2 )

hold on

p lo t ( k3 , y3 )

hold o f f

x l a b e l ( ’ S t r i k e Price ’ )

y l a b e l ( ’CRRA Cal l Price ’ )

l egend ( ’CGMY’ , ’ Normal ’ , ’ Variance Gamma’ )

shg

func t i on [C, k]= f a s t p r i c e ( ps i , s , k , r ,T, n)

[ gam , e r r ] = l s q n o n l i n (@(gam) p s i ( ( r e a l (gam−1 ) .∗1 i ))−exp ( r ∗T) . ∗ p s i ( r e a l (gam) .∗1 i ) , 1 ) ;

gam=r e a l (gam ) ;

p i i=@( alp , u ) 1 . / ( p s i ( ( gam−1)∗1 i ) ) . . .

.∗ s .ˆ(1+ alp+u .∗1 i ) . ∗ p s i ( ( gam−u∗1 i−alp −1).∗1 i ) . . .

. / ( a lp .ˆ2+ alp−u.ˆ2+(2∗ a lp +1).∗u .∗1 i ) ;

a lpspan = [ . 1 : . 1 : 1 0 ] ;m=length ( alpspan ) ;

c f s=ze ro s (m, 2 0 1 ) ;

a lp s = [ ] ;

uspan =[ −10 : . 1 : 10 ] ;

f o r j =1:m

c f s ( j , : )= p i i ( a lpspan ( j ) , uspan ) ;

i f ˜ isempty ( i n t e r s e c t ( r e a l ( c f s ( j , abs ( uspan )<9)) ,max( r e a l ( c f s ( j , : ) ) ) ) ) . . .

&& sum( isnan ( ( c f s ( j , : ) ) ) ) + sum ( ( i s i n f ( c f s ( j , : ) ) ) )==0

a lp s =[ a lp s alpspan ( j ) ] ;

end

end

alp =.1 ;

[C, k]= r o s e p r i c e ( ps i , s , k , n , alp , gam ) ;

end

func t i on [ y ,K]= r o s e p r i c e ( ps i , s , k , n , alp , gam)

kk=log ( k ) ;

p i=@( alp , u ) 1 . / ( p s i ( ( gam−1)∗1 i ) ) . . .

.∗ s .ˆ(1+ alp+u .∗1 i ) . ∗ p s i ( ( gam−u∗1 i−alp −1).∗1 i ) . . .

. / ( a lp .ˆ2+ alp−u.ˆ2+(2∗ a lp +1).∗u .∗1 i ) ;

phi=@(u) p i ( alp , u ) ;

[ y , uu ]=( f a s t f t ( phi , n , 1 0 0 0 0 ) ) ;

y=y (uu<kk ) ;

uu=uu(uu<kk ) ;
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y=exp(−uu .∗ a lp ) . ∗ abs ( y ) ;

K=exp (uu ) ;

end

8.4 Stochastic Volatility Bounds

call heston cf, which is for pricing options under the Heston model, was

borrowed from Cristomos[10]. The following script is for stochastic domi-

nance bounds using call heston cf:

K=(0 :200) ; lb=ze ro s ( l ength (K) , 1 ) ; ub=ze ro s ( l ength (K) , 1 ) ; heston=ze ro s ( l ength (K) , 1 ) ;

s =100;v =.1 ; t =1; vbar =.2 ; a =.3 ; eta =1; rho =−0.3; r =.04;mu=.1;

f o r k=1: l ength (K)

[ ub ( k ) , lb ( k ) , heston ( k)]= heston dara bounds ( s , v , t , vbar , a , eta , rho , r ,mu,K( k ) , − . 2 ) ;

end

uvol=calcBSImpVol (1 , ub , s ,K’ , t ∗ ones ( l ength (K) , 1 ) , r , 0 ) ;

l v o l=calcBSImpVol (1 , lb , s ,K’ , t ∗ ones ( l ength (K) , 1 ) , r , 0 ) ;

h e s tv o l=calcBSImpVol (1 , heston , s ,K’ , t ∗ ones ( l ength (K) , 1 ) , r , 0 ) ;

i v =(s−exp(−r ∗ t ) . ∗K) . ∗ ( s−exp(−r ∗ t ) . ∗K>0);

f i g u r e (1 )

p l o t (K, lb , ’ b ’ ,K, ub , ’ r ’ ,K, iv ,K, heston , ’ k−−’)

l egend ( ’ lower bound ’ , ’ upper bound ’ , ’ Merton bound ’ , ’ Heston with \ lambda=−0.2 ’)

x l a b e l ( ’ s t r i k e pr i c e ’ )

y l a b e l ( ’ c a l l p r i c e ’ )

hold o f f

f i g u r e (2 )

p l o t (K, l vo l , ’ b ’ ,K, uvol , ’ r ’ ,K, hes tvo l , ’ k−−’)

l egend ( ’ lower bound ’ , ’ upper bound ’ , ’ Heston with \ lambda=−0.2 ’)

x l a b e l ( ’ s t r i k e pr i c e ’ )

y l a b e l ( ’ impl i ed v o l a t i l i t y ’ )

f unc t i on [ ub , lb , heston ]= heston dara bounds ( s , v , t , theta , kappa , sigma , rho , r ,mu,K, lambda )

% s = current p r i c e

% v = current v o l a t i l i t y

% t = time to maturity

% theta = long−term mean v o l a t i l i t y

% kappa = v o l a t i l i t y mean r e v e r s i o n ra t e

% sigma .ˆ2 = v o l a t l i t y o f v o l a t i l i t y

% rho = pr i ce−v o l a t i l i t y c o r r e l a t i o n

% mu = d r i f t parameter
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% K = s t r i k e p r i c e

% lambda = r i sk−ave r s i on parameter

ub=c a l l h e s t o n c f ( s , v , theta−(mu−r )∗ sigma/kappa/rho , kappa , sigma , r , rho , t , K) ;

lb=c a l l h e s t o n c f ( s , v , theta , kappa , sigma , r , rho , t , K) ;

heston = c a l l h e s t o n c f ( s , v , theta ∗kappa /( kappa+lambda ) , kappa+lambda , sigma , r , rho , t , K) ;

end

8.5 Data

S&P500 stock data was collected on October 5, 2018 from Yahoo!Finance.
Daily adjusted close price was used for parameter estimation. Ford stock
data was collected on October 15, 2018 from Yahoo!Finance. Monthly
adjusted close price was used for non-volatility stock price parameter esti-
mation. Daily adjusted close price was used for volatility estimation and
volatility-related parameter estimation.
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